

1

Using Artificial Intelligence (AI)

For Large Software Engineering Projects – Part 4

Capers Jones

Foreword: The following pages constitute Part 4 of Using Artificial Intelligence for Large Software Engineering

Projects by Capers Jones, released for distribution to the International Function Point Users Group (IFPUG) in

January of 2025. Topics in this extract include: Reuseable Components and AI.

Note: Many of the illustrations in the original document were produced using artificial intelligence. As of February,

2025 AI-generated illustrations cannot be copyrighted. The remaining content of this document, while shared, is

copyrighted by Capers Jones, 2025.

Acknowledgment: The IFPUG community expresses its appreciation to Mr. Jones for his lifelong pursuit of

metrics-based state of and recommended improvements for software development practices globally.

Joe Schofield

2

Software Development from Certified Reusable Components and Artificial Intelligence

Because custom designs and manual coding are slow, error prone, and inefficient it is useful to

show the future impacts of varying levels of reusable components. The phrase “reusable

components” refers to much more than just reusable source code. A basic feature of AI for

software is a full library of reusable materials. Samples what needs to be reused are shown in

table n:

Table 4: Major Reusable Software Components

1. Reusable requirements

2. Reusable architecture

3. Reusable design

4. Reusable project plans

5. Reusable estimates

6. Reusable source code

7. Reusable test plans

8. Reusable test scripts

9. Reusable test cases

10. Reusable marketing plans

11. Reusable user manuals

12. Reusable training materials

13. Reusable HELP screens and help text

14. Reusable customer support plans

15. Reusable maintenance plans

Figure 1 illustrates why software reuse is the ultimate future software engineering methodology

that is needed to achieve high levels of productivity, quality, and schedule adherence at the same

time. Figure 1 illustrates a generic application of 1,000 function points coded in the Java

language:

3

Figure 1: Impact of Reuse on Software Productivity

Applications of 1000 function points in size are normally created at rates of between about 6.00

and 13.50 function points per staff month using custom designs and manual coding. Waterfall

would be at the low end of the spectrum while agile, RUP, TSP, and other advanced methods

would be at the high end of the spectrum.

Here are a few samples of various development methods and associated productivity rates using

function points per staff month for applications of a nominal 1000 function points in size

assuming above-average team experience levels:

Table 4: Productivity Ranges with and without Software Reuse

Methodologies Function Points

 Per Staff Month

1. AI generated with 90% reuse 300.00

2. Mashup with 65% reuse 47.41

3. Hybrid with 50% reuse 19.71

4. Hybrid with 25% reuse 15.52

5. Agile/scrum 12.08

6. Spiral at CMMI® Level 5 12.05

7. Extreme Programming (XP) 11.89

8. TSP at CMMI® Level 5 11.54

9. Rational Unified Process (RUP) 9.92

10. Iterative at CMMI® Level 3 9.37

11. Iterative with object-oriented methods 9.31

0 50 100 150

Reuse = 0%

Reuse = 10%

Reuse = 20%

Reuse = 30%

Reuse = 40%

Reuse = 50%

Reuse = 60%

Reuse = 70%

Reuse = 80%

Reuse = 90%

Function Points per Staff Month

Impact of Reuse on Productivity

Series2

Series1

4

12. Lean six-sigma 9.21

13. Waterfall domestic outsource 6.80

14. Waterfall offshore outsource 6.29

15. Waterfall at CMMI® Level 1 6.05

16. Waterfall with novices at CMMI® 1 5.03

As can be seen the examples with reuse are at the top of the list. Below the top two examples

zero reuse is assumed. It should be noted than none of the reuse shown above was “certified” as

discussed in this article. Primarily the reusable components came from similar applications

within the same company. No doubt some of these reusable materials contained bugs, security

flaws, or both. Uncertified reuse is cheaper than custom development, but also somewhat

hazardous.

However, without reuse no method would top about 15.00 function points per staff month for

applications of a nominal 1000 function points in size. This is much slower than needed for

rapidly changing business situations. It is somewhat analogous to having a national automobile

speed limit of only 25 miles per hour.

Figure 1 illustrates reuse from 0% to 90% which is likely to be the upper limit for many

applications. If it were possible to create new applications from 100% reusable components

productivity could top 150 function points per staff month, or about 15 times faster than today’s

averages in 2024 even for agile projects.

Reuse also benefits quality and security. Table 5 shows the approximate impact of reuse on

delivered software defects for an application of 1000 function points in size. Defect potentials

are shown in terms of defects per function point because that metric allows all defect origins to

be included (requirements defects, design defects, code defects, document defects, and bad fixes

or secondary defects):

Table 5: Software Reuse and Software Quality Levels at Delivery

Percent Defect Defect Delivered

of total Potential per Removal Defects

Reuse Function Pt. Percent per FP

90.00% 1.00 99.50% 0.01

80.00% 1.25 98.00% 0.03

70.00% 1.50 97.00% 0.05

60.00% 2.00 95.00% 0.10

50.00% 2.50 92.00% 0.20

40.00% 3.00 90.00% 0.30

30.00% 3.75 87.00% 0.49

5

20.00% 4.25 85.00% 0.64

10.00% 5.00 83.00% 0.85

0.00% 5.50 80.00% 1.10

As clearly shown by table 5 software reuse will have major benefits for software quality

improvement.

Table 6 shows the same sequence as Table 5 only for the prevention and removal of security

flaws, also for an application of 1000 function points in size. In general, there are fewer security

flaws than defects, but they are harder to find and to eliminate so the defect removal efficiency is

lower against security flaws than against ordinary bugs:

Table 6: Reuse and Software Security Flaws at Delivery

Percent Security Flaw Delivered

of Flaws per Removal Flaws

Reuse Function Pt. Percent per FP

90% 0.40 99.00% 0.004

80% 0.50 96.00% 0.020

70% 0.60 92.00% 0.048

60% 0.80 90.00% 0.080

50% 1.00 87.00% 0.130

40% 1.20 83.60% 0.197

30% 1.50 80.75% 0.289

20% 1.91 78.85% 0.404

10% 2.25 76.95% 0.519

0% 2.85 75.05% 0.711

The bottom line is that certified reusable components would be substantially free from both

latent defects and also from latent security flaws.

Reuse potential volumes vary by industry and application type. Reuse potential is the percentage

of overall application features that are provided by certified reusable components rather than

being custom designed and manually coded. Table 7 shows approximate reuse potentials for the

current year of 2024, and then future reuse potentials for 2054 or thirty years from now:

6

 Table 7: Software Reuse Potentials by 2054

 2024 2054
 Reuse Reuse
 Potential Potential

1
AI-generated software systems

Telecommunications applications
 30.00% 97.00%

2 Embedded applications (automotive) 20.00% 97.00%

3 Electric power applications 35.00% 95.00%

4 Airline applications (reservations, logistics) 15.00% 95.00%

5 Hotel applications (reservations, logistics 18.00% 95.00%

6 Medical applications billing 15.00% 95.00%

7 Insurance applications - property 45.00% 90.00%

8 Insurance applications - life 50.00% 90.00%

9 Banking applications 60.00% 85.00%

10 State government applications 35.00% 85.00%

11 Education applications - primary/secondary 30.00% 85.00%

12 Wholesale applications 60.00% 85.00%

13 Municipal government applications 40.00% 80.00%

14 Retail applications 40.00% 80.00%

15 Manufacturing applications 45.00% 75.00%

16 Federal civilian government applications 30.00% 75.00%

17 Weapons systems 20.00% 75.00%

18 Insurance applications - health 25.00% 70.00%

19 Education applications - university 35.00% 70.00%

20 Medical applications - diagnostic 5.00% 55.00%

 Average Reuse Potential 32.65% 83.70%

For many industries most corporate software applications do pretty much the same thing as every

other company in the industry. The concept of reusable components is to identify the specific

sets of features that are potentially reusable for every company in specific industries. For some

industries such as banking and stock trading, there are Federal laws and mandates that make

reuse mandatory for at least some critical features.

Some examples of common reusable features circa 2023 include but are not limited to the

following: 1) accounting rate of return, 2) automotive GPS software, 3) bar code reading

devices, 4) browser add-ins, 5) compound interest, 6) PBX switches; 7) Crystal reports, 8)

cryptographic key processing, 9) currency conversion, 10) Excel functions,11) facial recognition,

12) inflation rates, 13) internal rate of return, 14) metrics conversion, 15) PDF document

conversion, 16) real estate depreciation, 17) state sales tax calculations, 18) traffic light controls,

and 19) Word templates; 20) World-time clock features.

7

As of today, reusable components approximate 15% of the features in many common

applications, and sometimes top 30%. As of 2024 reuse is not always certified, but the major

commercial reusable components are fairly reliable. Unfortunately there are several gaps in the

reuse domain that need to be filled: 1) There is no effective taxonomy of reusable features; 2)

There are no available catalogs of reusable features that might be acquired from commercial

sources; 3) Software measurements tend to ignore or omit reusable features, which distorts

productivity and quality data; 4) Some software estimating tools do not include reuse (although

this is a standard feature in the author’s Software Risk Master (SRM) estimating tool; 5) Much of

the literature on reuse only covers code and does not yet fully support reusable requirements,

reusable designs, reusable test materials, and reusable user documents.

One major barrier to expanding reuse at the level of specific functions is the fact that there are no

effective taxonomies for individual features used in software applications. Current taxonomies

work on entire software applications, but are not yet applied to the specific feature sets of these

applications. For example, the widely used Excel spreadsheet application has dozens of built-in

reusable functions, but there is no good taxonomy for identifying what all of these functions do.

Obviously, the commercial software industry and the open-source software industry are

providing reuse merely by selling software applications that are used by millions of people. For

example, Microsoft Windows is probably the single most widely used application on the planet

with more than a billion users in over 200 countries. The commercial and open-source software

markets provide an existence proof that software reuse is an economically viable business.

Commercial reuse is fairly large and growing industry circa 2024. For example, hundreds of

applications use Crystal Reports. Thousands use commercial and reusable static analysis tools,

firewalls, anti-virus packages, and the like. Hundreds of major companies deploy Enterprise

Resource Planning (ERP) tools which attempt reuse at the corporate portfolio level. Reuse is not

a new technology, but neither is it yet an industry with proper certification to eliminate bugs and

security flaws prior to deployment.

