

1

Using Artificial Intelligence (AI)

For Large Software Engineering Projects – Part 2

Capers Jones

Foreword: The following pages constitute Part 2 of Using Artificial Intelligence for Large Software Engineering

Projects by Capers Jones, released for distribution to the International Function Point Users Group (IFPUG) in

January of 2025. Topics in this extract include: Best to Worst Software Engineering Practices.

Note: Many of the illustrations in the original document were produced using artificial intelligence. As of February,

2025 AI-generated illustrations cannot be copyrighted. The remaining content of this document, while shared, is

copyrighted by Capers Jones, 2025.

Acknowledgment: The IFPUG community expresses its appreciation to Mr. Jones for his lifelong pursuit of

metrics-based state of and recommended improvements for software development practices globally.

Joe Schofield

2

Software Engineering Progress from 1955 to 2025

While Table 2 showed that software engineering in 2025 is plagued by many serious problems,

there have been significant improvements too. The author’s team has developed a technology

scoring method that ranks software technologies on a scale of +10 to -10.

A new method without much empirical data is the use of artificial intelligence (AI) to construct

new applications. The combination of AI and suites of reusable components may possibly

increase productivity from today’s average of 8 function points per month to more than 800

function points per staff month.

AI can shorten development schedules for large systems in the 10,000-function point size range

from 3 calendar years to 3 weeks, with 2 of those weeks devoted to discussions of user

requirements before construction begins.

Although AI is not yet a widely deployed software engineering tool, it may have a larger impact

on software productivity, costs, and schedules than any other in the history of software

engineering.

The best current methods benefit quality and productivity by > 25% compared to average values.

The worst methods at the bottom degrade productivity and quality by more than – 25%

compared to average values. Table 3 shows the Namcook rankings for 275 software methods

and practices:

Table 3: Software Methodology Rankings Scores

Best Practices

1

Artificial intelligence (AI) used for large software systems
10.00

2 Reuse-oriented development (85% reusable materials) 10.00

3 Reuse certification to near zero-defect levels 10.00

4 Peak defect removal efficiency > 99% 9.67

5 Requirements patterns - InteGreat 9.50

6 Defect potentials < 3.00 per function point 9.35

7 Requirements modeling (T-VEC) 9.33

8 Average defect removal efficiency > 95% 9.32

9 Personal Software Process (PSP) 9.25

10 Team Software Process (TSP) 9.18

11 Automated static analysis - code 9.17

12 Mathematical test case design (Hexawise) 9.17

13 Formal Inspections (code) 9.15

14 Measurement of defect removal efficiency (DRE) 9.08

3

15 Hybrid (CMM+TSP/PSP+others) 9.06

16 Automated static analysis - text 9.00

17 Feature driven (FDD) 9.00

18 FOG readability index - requirements 9.00

19 Hybrid (agile/RUP/TSP) 9.00

20 IntegraNova 9.00

21 Kaizen/kanban 9.00

22 Model-driven development 9.00

23 Object Oriented (OO) development 9.00

24 Reusable feature certification 9.00

25 Reusable feature change controls 9.00

26 Reusable feature recall method 9.00

27 Reusable feature warranties 9.00

28 Reusable source code (zero defect) 9.00

29 SEMAT + TSP 9.00

30 TSP/PSP 9.00

31 T-VEC 9.00

Good Practices

32 Activity-based productivity measures 8.83

33 Continuous integration 8.83

34 Early estimates of defect potentials 8.83

35 FLESCH readability score requirements 8.83

36 Object-oriented development (OO) 8.83

37 Automated security testing 8.58

38 Automated maintenance work benches 8.50

39 Automated UML static analysis 8.50

40 Measurement of bad-fix injections 8.50

41 Prince2 development methodology 8.50

42 Reusable test cases (zero defects) 8.50

43 Test case inspections 8.50

44 Formal security analysis 8.43

45 ITIL - customized 8.42

46 Formal Inspections (requirements) 8.40

47 Time boxing 8.38

48 Function point analysis (pattern matches) 8.33

49 Reusable designs (scalable) 8.33

50 Automated parametric cost estimating tools 8.28

51 Formal risk management 8.27

52 Automated defect tracking tools 8.17

4

53 Measurement of defect origins 8.17

54 Benchmarks against industry data 8.15

55 Function point analysis (high-speed) 8.15

56 Formal progress reports (weekly) 8.06

57 Agile development with SCRUM 8.02

58 Certification - vendor (Apple, Microsoft, etc.) 8.00

59 Certification (function points) 8.00

60 Continuous development 8.00

61 DevOps development methodology 8.00

62 Formal measurement programs 8.00

63 Global 24 hour development 8.00

64 Legacy data mining 8.00

65 Open-source 8.00

66 Project offices - automated 8.00

67 Prototypes - disposable 8.00

68 Re-estimating for requirements changes 8.00

69 Requirements modeling (IntegraNova) 8.00

70 Reusable architecture (scalable) 8.00

71 RUP 8.00

72 Service-Oriented modeling 8.00

73 Specifications by Example 8.00

74 Inspections (design) 7.94

75 Lean Six-Sigma 7.94

76 Six-sigma for software 7.94

77 Formal cost tracking reports 7.89

78 Automated configuration control 7.86

79 ITIL - normal 7.83

80 Formal test plans 7.81

81 Automated unit testing 7.75

82 Automated sizing tools (function points) 7.73

83 Automated project management tools 7.71

84 Scrum session (daily) 7.70

85 Automated quality and risk prediction 7.69

86 Reusable requirements (scalable) 7.67

87 Specialists for key skills 7.67

88 Formal requirements analysis 7.63

89 Data mining for business rule extraction 7.60

90 High-level languages (current) 7.53

91 Reusable tutorial materials 7.50

92 Rational Unified Process (RUP) 7.48

93 Function point analysis (IFPUG) 7.37

5

94 Measurement of requirements changes 7.37

95 Formal architecture for large applications 7.36

96 Automated ERP estimates 7.33

97 Best-practice analysis before start 7.33

98 Reusable feature catalog 7.33

99 Quality function deployment (QFD) 7.32

100 Joint Application Design (JAD) 7.27

101 TickIT assessments 7.25

102 Automated test coverage analysis 7.23

103 Measurement of defect severity levels 7.13

104 Formal SQA team 7.10

105 Inspections (test materials) 7.04

106 Automated project offices (APO) 7.00

107 DMAIC 7.00

108 Data State Development Method DSDM 7.00

109 Evolutionary Development (EVO) 7.00

110 Hybrid (agile+waterfall) 7.00

111 Lean 7.00

112 Legacy renovation 7.00

113 Mashup 7.00

114 Microsoft solutions 7.00

115 Product Line engineering 7.00

116 Reengineering 7.00

117 Reusable construction plans 7.00

118 Reusable HELP information 7.00

119 Reusable test scripts 7.00

120 Reverse engineering 7.00

121 SEMAT+Agile 7.00

122 Test-driven development 7.00

123 Total Cost of Ownership (TCO) measures 7.00

Average Practices

124 Formal Governance 6.92

125 Automated deployment support 6.87

126 Automated cyclomatic complexity analysis 6.83

127 Forensic analysis of cancelled projects 6.83

128 Reusable reference manuals 6.83

129 Capability Maturity Model (CMMI® Level 5) 6.82

130 Automated documentation tools 6.79

131 Annual training (technical staff) 6.67

6

132 Metrics conversion (automated) 6.67

133 Change review boards 6.62

134 Automated test case generation 6.50

135 Automated test library control 6.50

136 Formal scope management 6.50

137 Inspections (architecture) 6.50

138 Project offices - manual 6.50

139 Service level agreements (SLA) 6.50

140 Annual training (managers) 6.33

141 Extreme programming (XP) 6.28

142 Service-Oriented Architecture (SOA) 6.26

143 Automated requirements tracing 6.25

144 Automated performance analysis 6.17

145 Baselines for process improvement 6.17

146 Use cases 6.17

147 Information engineering (IE) 6.00

148 Iterative development 6.00

149 Legacy redevelopment 6.00

150 Spiral development 6.00

151 Structured development 6.00

152 User satisfaction surveys 6.00

153 Value analysis (intangible value) 6.00

154 Formal project office for large systems 5.88

155 Automated modeling/simulation 5.83

156 Certification (six sigma) 5.83

157 Outsourcing (maintenance => (CMMI® Level 3) 5.83

158 Capability Maturity Model (CMMI® Level 4) 5.79

159 Certification (software quality assurance) 5.67

160 Outsourcing (development => CMMI® Level 3) 5.67

161 Value analysis (tangible value) 5.67

162 Root-cause analysis 5.50

163 Total Cost of Learning (TOL) measures 5.50

164 Cost of quality (COQ) 5.42

165 Embedded users in team 5.33

166 Normal structured design 5.17

167 Capability Maturity Model (CMMI® Level 3) 5.06

168 Certification (project managers) 5.00

169 Certification (test personnel) 5.00

170 Crystal 5.00

171 Earned-value measures (EVA) 5.00

172 Merise 5.00

7

173 Prince 2 5.00

174 RICE objects 5.00

175 Unified Modeling Language (UML) 5.00

176 Normal maintenance activities 4.54

177 Rapid application development (RAD) 4.54

178 Function point analysis (FISMA) 4.50

179 Function point analysis (Netherlands) 4.50

180 Partial code reviews 4.42

181 Automated restructuring 4.33

182 Function point analysis (COSMIC) 4.33

183 Function point analysis (unadjusted) 4.33

184 Partial design reviews 4.33

185 Team Wiki communications 4.33

186 Function points (micro .001 to 10) 4.17

187 Automated daily progress reports 4.08

188 CASE 4.00

189 Maintenance tool suites 4.00

190 Outsourcing (maintenance < CMMI® Level 3) 4.00

191 User stories 3.83

192 Outsourcing (offshore => CMMI® Level 3) 3.67

193 Goal-question metrics 3.50

194 Refactoring 3.33

195 Manual document production 3.17

196 Capability Maturity Model (CMMI® Level 2) 3.00

197 RAD 3.00

198 Technical debt - metaphor 3.00

Unsafe Practices

199 Clean-room development 2.50

200 Formal design languages 2.50

201 ISO Quality standards 2.00

202 Pair programming 2.00

203 Project-level productivity measures 2.00

204 V-Model 2.00

205 Function point analysis (backfiring) 1.83

206 Use Case points 1.67

207 Normal customer support 1.50

208 Partial governance (low risk projects) 1.00

209 Waterfall 1.00

210 Low-level languages (current) 1.00

8

211 Object-oriented metrics 0.33

212 Manual testing 0.17

213 Outsourcing (development < CMMI® 3) 0.17

214 Story points 0.17

215 Manual change control -0.50

216 Manual test library control -0.50

217 Reusability (average quality materials) -0.67

218 Prototypes - evolutionary -1.00

219 Capability Maturity Model (CMMI® Level 1) -1.50

220 Informal progress tracking -1.50

221 Outsourcing (offshore < CMM 3) -1.67

222 End-user development -2.00

223 Inadequate test library control -2.00

224 Pair programming -2.00

225 Generalists instead of specialists -2.50

226 Inadequate measurement of productivity -2.67

227 Manual cost estimating methods -2.67

228 Cost per defect metrics -2.83

229 Inadequate customer support -2.83

Worst Practices

230 Friction between stakeholders and team -3.50

231 Informal requirements gathering -3.67

232 Lines of code metrics (logical LOC) -4.00

233 Inadequate governance of financial applications -4.17

234 Lines of code metrics (physical LOC) -4.50

235 Partial productivity measures (coding only) -4.50

236 Inadequate sizing of key deliverables (code, documents, tests etc.) -4.67

237 High-level languages (obsolete) -5.00

238 Technical debt – metrics -5.00

239 Inadequate communications among team -5.33

240 Inadequate change control -5.42

241 Inadequate value analysis of application -5.50

242 Cowboy programming methodology -5.67

243 Friction/antagonism among team members -6.00

244 Inadequate manual cost estimating methods -6.04

245 Inadequate risk analysis before starting -6.17

246 Low-level languages (obsolete) -6.25

247 Government mandates (short lead times) -6.33

248 Inadequate testing -6.38

9

249 Friction/antagonism among management -6.50

250 Inadequate communications with stakeholders -6.50

251 Inadequate measurement of quality -6.50

252 Inadequate problem reportings -6.67

253 Error-prone modules (EPM) in applications -6.83

254 Friction/antagonism among stakeholders -6.83

255 Failure to estimate requirements changes -6.85

256 Inadequate defect tracking methods -7.17

257 Layoffs/loss of key personnel -7.33

258 Rejection of estimates for business reasons -7.33

259 Inadequate inspections of key deliverables -7.42

260 Inadequate security controls -7.48

261 Excessive schedule pressure by clients, management -7.50

262 Inadequate progress tracking that hides problems -7.50

263 Litigation (non-compete violation) -7.50

264 Defective test cases with bugs of their own -7.67

265 Inadequate cost tracking that omits unpaid overtime -7.75

266 Litigation (breach of contract) -8.00

267 Cowboy development methodology -9.00

268 Defect potentials > 6.00 per function point -9.00

269 Reusability (high defect volumes) -9.17

270 Defect removal efficiency < 85% -9.18

271 Litigation (poor quality/damages) -9.50

272 Litigation (security flaw damages) -9.50

273 Anti patterns or extremely poor development -10.00

274 Litigation (intellectual property theft) -10.00

275 Litigation (patent violation) -10.00

As can be seen by Table 3, the software engineering world has hundreds of methodologies and

practices which range from very good to very harmful. Progress in software engineering

resembles a “drunkard’s walk” with a mix of advances and regressions. The reason for this is the

endemic use of bad metrics such as “lines of code” (LOC) and “cost per defect” which conceal

true progress and distort reality.

These poor measurement practices make selecting a software engineering methodology or

selecting a programming language somewhat similar to joining a religious cult. In religious cults

faith in invisible phenomena are substitutes for scientific deliberation based on actual empirical

data.

