

1

Using Artificial Intelligence (AI)

For Large Software Engineering Projects – Part 1

Capers Jones

Foreword: The following pages constitute Part 1 of Using Artificial Intelligence for Large Software Engineering

Projects by Capers Jones, released for distribution to the International Function Point Users Group (IFPUG) in

January of 2025. Topics in this extract include: Function Points and a Glimpse Towards 2054, Abridged History or

Software Problems, and Software Engineering Progress.

Note: Many of the illustrations in the original document were produced using artificial intelligence. As of February,

2025 AI-generated illustrations cannot be copyrighted. The remaining content of this document, while shared, is

copyrighted by Capers Jones, 2025.

Acknowledgment: The IFPUG community expresses its appreciation to Mr. Jones for his lifelong pursuit of

metrics-based state of and recommended improvements for software development practices globally.

Joe Schofield

2

Circa 2025, the U.S. average software productivity is roughly 8.00 function points per staff

month or 16.5 work hours per function point. The current U.S. average software quality

combines a defect potential of about 4.25 bugs per function point and defect removal efficiency

(DRE) of only about 92.5%. Delivered defects average about 0.319 per function point.

(Function points are better than the older “lines of code” (LOC) metric since they can measure

non-coding work and measure bugs in requirements and design, which are invisible using LOC.)

The percentage of large software projects > 10,000 function points that are canceled and never

delivered is close to 35%. The percentage of large software projects that exceed planned

schedules and exceed their planned budgets is about 75%.

Software engineering in 2024 has more failing projects and more delays and cost overruns than

any other technical industry. Interviews with CEOs of Fortune 500 companies indicate that

CEOs universally regard software engineering as their least competent and least professional

technical organizations due to their frequent failures and excessive overruns.

To become an effective and trusted technical profession software engineering needs to make

major improvements over the next 20 years between 2024 and 2054. From examining current

and advanced technologies, the author proposes these targets for software engineering in 2054:

Table 1: Proposed Software Engineering Targets for 2054 Compared to 2024

 Percent

Software Engineering Factors 2024 2054 Difference Improvement

Average % of reusable components 10.00% 85.00% 75.00% 750.0%

Function points per month 8.00 96.00 88.00 1100.0%

Work hours per FP 16.50 1.38 -15.13 -91.7%

$ per function point (development) $1,000.00 $125.00 -$875.00 -87.5%

$ per function point (maintenance) $1,250.00 $150.00 -$1,100.00 -88.0%

Total Cost of Ownership (TCO) $2,250.00 $275.00 -$1,975.00 -87.8%

Defect Potential per function point 4.00 1.00 -3.00 -75.0%

Defect removal efficiency (DRE) 92.50% 99.50% 7.00% 7.6%

Delivered defects per FP 0.30 0.01 -0.30 -98.3%

High-severity defects delivered 0.05 0.00 -0.04 -81.9%

Security flaws delivered 0.02 0.00 -0.02 -81.9%

High quality, on-time, on schedule 60.00% 99.00% 39.00% 65.0%

Cancelled projects 15.00% 1.00% -14.00% -93.3%

Cost overruns 35.00% 2.00% -33.00% -94.3%

Schedule delays 40.00% 2.00% -38.00% -95.0%

Successful cyber attacks 12.50% 0.50% -12.00% -96.0%

Breach of contract litigation 5.00% 0.50% -4.50% -90.0%

3

Custom designs for software applications and manual coding are intrinsically expensive, error-

prone, and slow regardless of which programming languages are used and which development

methodologies are used. Agile has been faster than waterfall, but it is still slow compared to

actual business needs. No manual methods by human software engineers can match future

development using artificial intelligence. Unfortunately, this means many software engineers

may lose their jobs.

Note that reusability is not just valuable for software. It has been a major part of the industrial

revolution for all industries. The approximate volume of standard reusable parts has been

increasing in all industries other than software:

Products Approximate Reuse Percent Circa 2024

1) Smart phones 95%

2) Personal computers 90%

3) Firearms (rifles, pistols, etc.) 85%

4) Home Construction (Japan) 75%

5) Automobiles 70%

6) Home appliances 65%

7) Telecommunications switches 60%

8) Aircraft (commercial) 50%

9) Home construction (U.S.) 15%

10) Software 10%

As of 2024 software seems to lag all other major products in terms of certified reusable

components. Modern reusable parts can be dated to the American inventor Eli Whitney and the

year 1794. Up until Whitney musket construction was a skilled craft and weapon makers could

only produce one or two firearms per month. Whitney received a contract to product 10,000

muskets in only two years. Whitney’s construction of fire arms from standard reusable

components lowered the skill level needed for manufacture, and vastly increased both

productivity and quality. These same principles are urgently needed in 2024 by the software

engineering community.

The only effective solution for software engineering is to move towards construction of

applications using standard reusable materials rather than custom design and development. The

idea is to build software more like Ford builds automobiles on an assembly line rather than like

the custom design and manual construction of a Formula 1 race car.

An ordinary passenger car and a Formula 1 race car have about the same number of mechanical

parts, but the race car costs at least 10 times more to build due to the large volumes of skilled

manual labor involved. The schedule would be more than 10 times longer as well. Custom

designs and manual construction are intrinsically slow and expensive in every industry.

Within 10 years both race cars and regular autos for consumers will be built by artificial

intelligence.

4

If you compare the costs and schedules of building an 80-story office building to an 80,000-

function point software system, the software is much more expensive and also much slower.

When deployed the software is much less reliable and has many more defects that interfere with

use than the other two. Worse, the software is much more likely to be attacked by external

criminals seeking to steal data or interfere with software operation.

These problems are endemic but not impossible to cure. It is technically possible today in 2015

to build some software applications from standard reusable components. It is also possible to

raise the immunity of software to external cyber-attack.

In the future more and more standard components embedded in AI software development tools

will expand the set of applications that can be assembled from certified standard parts free from

security vulnerabilities rather than needing custom design and laborious manual coding that tend

to introduce security flaws. Assembly from certified components can be more than 10 times

faster and cheaper than the best manual methods such as agile, and also much more secure than

today’s norms where security vulnerabilities are rampant.

Another approach to effective development of large software applications will be artificial

intelligence, although AI is not yet widely used for software in 2024. A combination of AI and a

large library of reusable components could improve large system development by more than an

order of magnitude. Probably quality and reliability would improve as well, although it is too

soon to know the quality and reliability of artificial intelligence software development.

A Brief History of Software Engineering Problems

Software engineering has been a manual and labor-intensive craft since the early days of

computers in the late 1940’s and early 1950’s. However, the problems became worse towards

the end of the 1960’s when software applications began to swell past 1,000,000 lines of code or

10,000 function points. Table 2 summarizes a large number of software engineering problems

between 1950 and 2024:

Table 2: A Brief History of Software Engineering from 1950 to 2024

1950 Machine language is too complex for increasing software size

1952 Low-level assembly languages released to improve on machine language

1957 Unstructured "cowboy" development is proven hazardous

1958 COBOL, ALGOL, and FORTRAN begin the market for high-level languages

1960 Structured development methods begin to replace unstructured "cowboy" development

1960 Software engineering, computer science curricula start at universities

1960 Waterfall development becomes normal for large defense software projects

1964 Defect removal becomes the # 1 software cost driver > 1000 FP

5

1965 Flowcharts proven inadequate; HIPO, Nassi-Shneiderman, and later UML augment designs

1969 Paperwork becomes the #2 software cost driver > 1000 FP

1970 Requirements creep becomes the #3 cost driver > 1000FP

1970 IBM has first major schedule delays on OS/360

1970 IBM discovers error-prone modules (EPM); 5% EPM contain > 50% of application defects.

1970 IBM discovers serious mathematical errors with "lines of code" metric

1971 IBM discovers > 5% of test cases have errors.

1972

Applications grow > 10,000 function points or 1,000,000 LOC; with schedule and cost overruns

rampant

1972 IBM discovers that testing defect removal efficiency for normal test sequence is < 85%

1972 IBM discovers serious mathematical errors with "cost per defect" metric

1973 IBM introduces formal inspections to solve poor testing problems

1973 IBM builds first internal software parametric estimation tool (Development Planning System)

1973 IBM invests in function points to solve LOC metrics errors

1973 IBM develops "defect potential" and "defect removal efficiency" metrics to prove inspections

1975 Requirements creep tops 1% per calendar month > 1000 FP

1975 Human deaths and injuries due to software increase in frequency

1975 IBM develops "backfiring" or mathematical conversion from LOC to function points

1976 Project management becomes #5 cost driver > 1000 FP

1976 Cyclomatic complexity metric released and proves harm of complex code

1977 Defect potentials top 5.00 per function point > 1000 FP

1977 IBM attempts a universal language (PL/I) which does not replace other languages

1978 Defect removal efficiency usually below 90% for projects > 1000 FP

1978 Design errors are > 20% of all software defects

1978 IBM places function point metrics in public domain as a public service

1978 Software antitrust litigation becomes significant

1978 IBM discovers that bad-fixes in software > 7% (these are bugs in bug repairs)

1979 Coding drops to #4 cost driver > 1000 FP due to huge document and defect repair costs

1980 Requirements errors > 15% of all software defects

1980 Debugging tools released to help programmers find bugs

1981 First parametric estimation tool released to improve estimate accuracy (COCOMO)

1982 Canceled projects > 25% for projects > 10,000 function points

1982 Canceled projects > 50% for projects > 100,000 function points

1982 International Function Point Users Group (IFPUG) formed to standardize function points

1983 Schedule delays > 25% for projects > 1000 FP

1983 IBM develops Joint Application Design (JAD) to improve requirements rigor

1984 Cost overruns >20% for projects > 1000 FP

1984 First parametric tool based on function points released (SPQR/20)

1984 Static analysis tools released to improve testing inadequacy

1985 Patent violation litigation becomes significant

1985 Errors found in manual correctness proofs; automated proofs better

1985 Software Engineering Institute (SEI) formed to help solve software problems

1986 Computer hacking becomes serious

1986 First certification exam for function points offered by IFPUG

1986 Large projects found to need formal project offices or risk serious delays and overruns

6

1986 New programming languages developed at more than 1 per month; nobody knows why

1987 Cyber-attacks and cyber-crime become serious

1987 First version of SEI capability maturity model (CMM) released

1988 Test coverage tools arrive - show test coverage is often < 80% due to high code complexity

1991 Average defect removal efficiency of testing stages such as unit test shown to be < 35%

1991 Average defect removal efficiency of formal inspections shown to be > 80%

1992 Outsource breach of contract litigation becomes significant

1993 Cyber-crime units created by FBI, CIA, Secret Service, etc.

1994 Automated requirements models begin to add rigor to requirements definitions

1995 Coding errors drop from > 70% to < 30% of totals due to high-level languages

1997

International Software Benchmark Standards Group (ISBSG) formed to improve benchmark

access

1998 Arrival of Euro causes expensive changes to thousands of applications

1998 Offshore outsourcing begins to erode U.S. and European software jobs

1999 Social networks spread personal information globally

1999 ERP deployment found to be troublesome; ERP quality is poor due to huge sizes

2000 Y2K problem damages thousands of software projects

2001 Agile invented to solve waterfall development problems

2001

Major software failures damage stock markets, air traffic, medical devices, and airline

reservations

2003 Automated testing tools arrive to speed up manual testing

2006 Maintenance costs become larger than development costs in U.S. and Europe

2006 ISO standards published on functional size measures

2008 Major industrial cyber-attacks in several countries

2008

Brazil becomes 1st country to mandate function points; Italy, Japan, South Korea, Malaysia

follow

2009 Average defect removal efficiency of static analysis shown to be > 55%; false positives are 5%

2010 Cyber warfare units formed in all major countries

2010 IBM coins "greenfield" for new software and "brownfield" for software impacted by legacy

2010 Globally "brownfield" projects are about 65%; "greenfield projects are about 35%

2010 Interviews show that software historical data "leaks" and is only about 37% complete

2010 Interviews show that major leakage include unpaid overtime, management, and specialists

2010 Interviews show that historical quality data "leaks" and is less than 50% complete

2010 Interviews show that desk checks, static analysis, and unit test bugs are almost never tracked

2011 Namcook files patent application on early-high speed sizing method

2011 Software Risk Master (SRM) released to speed up sizing and do earlier estimates

2011 Software Engineering Methods and Theory (SEMAT) proposed to help software problems

2011 OMG standards published on automated function point counts

2012 Automated project office (APO) released to improve tracking, visibility

2012 Hundreds of legacy applications coded in dead languages (CHILL, Coral, Bliss, Mumps, etc.)

2012 The new metric of "Technical Debt" is published and becomes popular.

2012 The new metric "SNAP" (software non-functional assessment process) created by IFPUG.

2012 Less than 50% of global projects use static analysis; less than 15% use formal inspections

2012

Average application uses about 3 languages such as Java, HTML, and SQL; makes code counts

hard

2013 Automatic function point counts developed to speed up counting

7

2013 U.S. software costs now about 60% maintenance; 40% development

2013 Cost of Quality (COQ) now about 43% of Total Cost of Ownership (TCO)

2014 Software industry has 58 named development methods; few have empirical data of success

2014 Selecting programming languages resembles joining religious cults due to lack of empirical data

2014

Selecting development methodologies resembles joining religious cults due to lack of empirical

data

2015 Number of programming languages tops 2,500; less than 50 are widely used; nobody knows why

2015 Software failures, schedule delays, and cost overruns are still rampant > 10,000 function points

2015 Average software defect potentials now about 4.00 per function points; DRE now about 92.5%

2015 Average software productivity now about 8.00 function points per month; 16.5 work hours per FP

2015 Function points now divided among COSMIC, FISMA, IFPUG, NESMA, and a dozen others

2015 Frequent cyber-attacks on U.S. government and corporate data; most from foreign governments.

2015

Inaccurate manual estimates still top 80% globally; accurate parametric estimates below 20%

globally

2015 Function point metrics now #1 in Europe, South America, and U.S; but lag in China and Russia

2015

Less than 1% of software projects globally collect accurate benchmark data; less than 5% any

data

2015 Inaccurate metrics, incomplete measurements, inaccurate estimates are global software problems

2016 Bug repairs now #1 cost driver for software applications

2016 Cyber-attacks and cyber-recovery approach #2 cost driver for software applications

2016 Software has 65 named development methodologies: none are suitable for all applications.

2016 Software has > 3,000 programming languages: none are suitable for all applications

2016 An average application in 2016 uses about 2.5 programming languages

2020 Corona virus arrives in U.S. and disrupts many businesses

2020 Claims of election cheating involving computerized vote counts

2021 Increasing litigation for software failures

2022 Failures of important government software application

2023 Concerns of military software due to Ukraine Russia launch failures

2023 Concerns begin about artificial intelligence replacing human jobs

2023 Artificial intelligence is approaching readiness for software development

2024 Court decisions on AI copyrights for software, books, music, etc.

As can be seen by Table 2, software engineering is still troubled by major problems even in

2024. Software remains a troubling industry plagued by far too many canceled projects, and far

too many cost and schedule overruns.

Poor quality of delivered software is also an industry disgrace. Every software project should

measure defect removal efficiency (DRE), and all software outsource contracts should mandate

DRE levels > 97.5%. Critical applications (medical devices, weapons, finance, etc.) should

mandate DRE levels above 99.5%. The current average is only about 92.50% so quality

improvements are urgently needed.

One major way to improve quality is to use design and code inspections. The next picture shows

a future inspection in progress in 2034 with humans and robots discussing code together:

8

