
inside
Understanding and Defining Quality

for Your Organization

A Semiclassical Approach to Agile
Quality Metrics

Considerations for Establishing Agile
Quality Metrics

Agile Testing Methods: A Path to
Improved Software Quality

A Solution to Track and Move

MetricViews
Vol. 13 • Issue 2

Views
i fpug.org

September 2019

A PUBLICATION OF THE INTERNATIONAL FUNCTION POINT USERS GROUP

IN THIS EDITION
Here is a snapshot of the exciting articles you will find in this edition of

MetricViews:

Understanding and Defining Quality for Your Organization

(By Phil Lew)

Phil Lew presents a framework for defining quality in an organization and

then using that definition as the basis for determining measurements and

metrics. With those measures in place, you can better understand whether or

not you are moving forward or backward.

A Semiclassical Approach to Agile Quality Metrics

(By Dr. Raymond Boehm, CFPS Fellow)

Dr. Raymond Boehm shares an overview of techniques to ensure a software

product meets quality standards. Techniques discussed include defect analysis,

failed deployments, net promoter score and recidivism.

Considerations for Establishing Agile Quality Metrics

(By Joe Schofield)

Agile includes a broad set of frameworks and techniques roughly bound

together by a set of principles and a manifesto. Joe Schofield shares his

thoughts on and experiences with the use of agile measurements and metrics

for establishing agile quality metrics.

Agile Testing Methods: A Path to Improved Software Quality

(By Sheila P. Dennis, CFPS)

Sheila Dennis relates that Test Driven Development (TDD) executed within

an agile framework facilitates higher quality software in less time. In addition,

she shares her thoughts about supporting business needs with the positive

aspects of TDD.

A Solution to Track and Move

(By Ankitha Pareek and Anupama Karal)

Ankitha Pareek and Anupama Karal introduce a DevOps Dashboard, which

was designed as a solution to achieve cross-enterprise IT visibility. Learn how it

provides visibility across all aspects of the IT lifecycle.

IN
S
ID

E

In this Edition ..2

Message from the President3

From the Editor’s Desk ...3

Understanding and Defining Quality
for Your Organization ..4

A Semiclassical Approach to Agile
Quality Metrics ...8

Considerations for Establishing Agile
Quality Metrics ..12

Agile Testing Methods: A Path to
Improved Software Quality17

A Solution to Track and Move21

Committee Reports

• Certification Committee24

• Communications and
Marketing Committee24

• Conference and Education Committee25

• Functional Sizing Standards Committee25

• Industry Standards Committee25

• International Membership Committee..........26

• Non-Functional Sizing Standards

Committee ..26

IFPUG Board Election Schedule27

Stay Connected ...28

2 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

3 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Mauricio Aguiar

Size Still Matters

As the years go by, I tend to think of the future of Functional

Size Measurement as a way of quantifying software. Because

software will probably be around for a long time, I can risk

saying the size of software will also remain relevant for many

years to come. Does this sound unlikely? Well, maybe not if

you remember that “area”—measured in square meters, square

feet, or any other unit you think of—has been around and

relevant for thousands of years.

Software will certainly change and be applied to situations

we may only dream of today, but it will still perform functions

and keep data that those functions will use. Show me a function

that uses data and I will show you a function point count!

I have seen wonderful presentations about function point

counting new technologies such as IoT (think robots), games,

and even weird things such as Second Life (remember that).

Maybe enhanced humans will carry embedded software in the

future and I can clearly imagine function points measuring that.

Without trying to preach to the converted, I’d like to think

we measure software to estimate important variables such as

the effort to develop a piece of software, the duration of a

software development project, the defect density, and the

productivity of software teams.

Needless to say, it should be no surprise that size remains

relevant independently of the development method used—

waterfall, agile, or whatever they come up with in the future.

The amount of software functionality an organization is able to

develop in a fixed period and how much that costs will remain

relevant as long as money is relevant in a society.

Mauricio Aguiar
IFPUG President

President’s Message

Message from
the President

Mauricio Aguiar

From the Editor’s Desk

David Herron

From the Editor’s Desk

David Herron

Phillip Crosby published his wildly successful book, Quality

is Free, in 1979. Crosby’s principle, Doing It Right the First

Time, was his answer to the quality crisis. He defined quality as

full and perfect conformance to the customers’ requirements.

His argument for quality being free was that an investment in

improving quality pays itself back very quickly.

Where are we today with respect to improving software

quality? I think Joe Schofield summed it up nicely with

the opening statement in his article (in this edition),

Considerations for Establishing Agile Quality Metrics.

He states, “The quest for quality continues.”

As the IT industry continues to embrace agile methods and

frameworks, it is time we take a look at the issue of quality

when using those frameworks. Do tried-and-true practices such

as reviews and inspections still apply? Are one-time accepted

measures such as defect density still in play?

We reached out to the IFPUG community to see if we could

gain some insight into what IT shops are doing with respect

to measuring and improving quality. We received a number of

responses (more than we could publish in this edition). What

we learned from these authors is that quality is still very much

a part of the overall software development and deployment

framework. Is there a perfect one-size-fits-all solution? Of

course not, but the articles in this edition of MetricViews show

the variety of possibilities for improving software quality.

David Herron
 Communications and Marketing Committee

Editor’s Message

4 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Abstract
Leadership often talks about software quality, but rarely

investigates and determines what practices it will take to reach
the destination let alone the destination itself. Do people in
your organization discuss quality, but then when it comes time
for concrete measures to improve quality, nothing happens?
The reason this happens is that most organizations don’t know
what quality means to them. They say they want their custom-
ers or end users to be “satisfied,” but what does that really
mean? And if you can’t define quality, then how can you even
begin to track, measure and improve it? This paper provides a
framework for first defining what quality is for your organiza-
tion, and then using that definition as a basis for determining

measurements. With measurements and metrics, you can then
understand whether or not you’re moving forward or backward
as you race to attain velocity from sprint to sprint.

Why Measure Quality?
If you are going to trouble yourself with measuring quality,
what benefits will you get? In agile, some don’t want to think
about it. They may say the only thing that counts is what
customers or end users say. That is TRUE. We all care about
the end result, just as when we go to the doctor and want a
clean bill of health.

Understanding
and Defining Quality
for Your Organization

Feature

By Phil Lew

5 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

What is Quality?
The age-old question still remains and always will. The

reason is that there is no standard definition of quality
although many have tried to define it.

• William Edwards Deming (1900-1983): Known for his term
“Total Quality Management” and PDCA (Plan, Do, Check,
Act), Deming said, “Good quality is a predictable degree of
uniformity and dependability with a quality standard suited
to the customer. The underlying philosophy of all definitions
is the same—consistency of conformance and performance,
and keeping the customer in mind.”

• Philip Crosby (1926-2001): Known for his books, Quality
is Free and Quality Without Tears, Crosby said, “The
definition of quality is conformance to requirements. The
system of quality is prevention. The performance standard
is zero defects. The measurement of quality is the price of
non-conformance.”

• ISO 25010 (2011): This standard defines quality as “the
degree to which the system satisfies the stated and implied
needs of its various stakeholders, and thus provides value.”

The major difference in ISO 25010 versus Crosby and
Deming is that ISO 25010 sets out a more formal framework
for evaluating quality depending on the “stakeholders.” As we
all know, there can be many stakeholders, each with different
motives and goals. “Beauty is in the eye of the beholder.” The
same goes for quality. It’s different for everyone. Depending
on your point of view and context, your idea or concept of
quality will certainly be different from that of your CEO,
for example. Quality to the CEO most certainly will involve
revenue and customer satisfaction. To the developer, it may
include clean code. For a tester, it may involve finding (or
not finding) defects. For the end user, it may mean something
else. In accounting, accuracy to the penny for example. Once
you’ve developed a general concept of what quality means to
you, there are two steps to define it to the point where you can
evaluate and improve it.

Decomposition
Complex concepts are usually best understood by grasping

their smaller parts or components. We call this decomposition.
For example, instead of cooking dinner, you break the meal
down into a main dish with meat, fish, or poultry complemented
by a vegetable side dish along with a starch such as rice, bread,
potatoes or pasta. There are many decomposition paradigms
or models. Examples are tree, mind map and sets. Each of the

decomposition methods has its advantages and disadvantages
depending on how you want to decompose quality.

Figure 1. Set Decomposition

Figure 2. Tree Decomposition

Figure 3. Mind Map Decomposition

Transition
Once you’ve defined quality for you, your organization, and

viewpoint, you can begin to grasp how to measure quality. The
next part of your journey is to understand your process and

“Depending on your point of view and
context, your idea or concept of quality
will certainly be different from that of
your CEO.”

6 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

how one step in your process affects subsequent steps. For
example, if you want to lose weight, naturally you measure
your weight, but there are at least two things that you can and
should measure before getting on the scale—your diet and
exercise. Anything you do in the areas of diet and exercise
will impact your measurement of weight at the end of the
day, right? So why not measure your food intake and exercise
rather than weight?

For software development, we all tend to count defects as
a critical measurement of quality, but this measurement is
similar to measuring your weight. What comes earlier in the
process? Depending on your software development process,
this could be requirements, design, grooming, user stories,
etc. The question now becomes what measurements can you
take before these other phases in your software development
process that precede testing (finding defects). To answer this
question, you need to examine your process.

Examining Your Process
If you don’t know where to start, start with defects. Of

course, you’ve been tracking defects for years. Find your
defects and examine their causes. This will lead you backward
in your process. Go back and examine that cause (requirements,
code logic). If the cause is code logic, was it because the
code was incorrect or incomplete? If so, why? If the code is
incorrect, this could be because the requirement or user story
was written incorrectly, or it could be that the user story was
written correctly but it was implemented incorrectly. If it was
implemented incorrectly, was it because the user story was not
accurate or incomplete? As you can see, it is possible to move
backward or forward when examining your process and mea-
sure the quality of each work product each step of the way.

Once you’ve begun to map out your development process,
you may begin to realize that requirements are a major cause
of defects. Understanding that requirements have a major
influence on code implementation (as do other influencing
factors), you can then examine requirements at the next level.

Requirements
Many articles and research have pointed to requirements as

the source of most defects, but not many will tell you specifi-
cally what a good requirement is, how to define it and how to
identify it. In developing a definition for quality requirements,
we decompose it into four elements—complete, unambiguous,
correct, and understandable. Refer to Figure 2, the tree structure
for decomposition.

Let’s take a deeper look at ambiguity. We can further define
ambiguity as the absence of certain words to increase clarity.
For example:

• Efficient

• Fast

• Effective

• Compatible

• User-Friendly

• Straightforward

• Powerful

• Easy

• Reliable

• Normal

• Few

• Intuitive

Requirements are important, so give yourself plenty of
quality checkpoints. For example, use grooming sessions as
a quality checkpoint. While you are reviewing and updating
user stories or requirements, note how many need revision
and why. A defect in the user story at this point is a defect
prevented later in the code.

“Many articles and research have pointed to
requirements as the source of most defects,
but not many will tell you specifically what
a good requirement is.”

7 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Defining Software Quality For You
As mentioned earlier, you can move backward and forward

in your process as you examine different transitions and
decompositions in your quality definition. Don’t forget that
much of the pressure on quality comes from customer or
user expectations. So where does the user begin to form his/
her expectations? If you are a software company, he/she may
investigate your company through the internet to examine
the features and functions of your product that are described
online. If you have a demo, he/she may watch the video
or perhaps get a trial version. Based on the demo and the
information on your website, are your customers or end users
getting a correct, complete and unambiguous understanding
and, therefore, accurate expectation of your product? With the
concepts introduced in this article, transition and decomposi-
tion, you can begin to work backward to map the end user’s
perception of quality to your internal development processes.
By doing so, you can finally understand what quality is for you
and your end users.

About the Author:

Philip Lew is the CEO at XBOSoft, a
firm specializing in software QA and
software testing services. As a corpo-
rate executive, development manager,
product manager and software engi-
neer, Philip has managed teams to

tackle broken processes, developed solutions to difficult
problems, and coached others to be leaders, managers and
experts. He leverages his academic background combined
with hands-on work experience to work with clients
and colleagues around the world. His hobbies include
cycling and traveling the world to quench his thirst for
exploration and learning. He can be reached via email
at philip.lew@xbosoft.com.

UPCOMING EVENTS
Round table on ISO 25000 [product/service quality] (Rome – Italy, Oct 30, 2019)

- https://gufpiisma.wildapricot.org/event-3408818

BFPUG Metricas 2019 (Sao Paulo – Brazil, Nov 7, 2019)
- https://bfpug.wordpress.com/conference-2019/

mailto:philip.lew@xbosoft.com
https://gufpiisma.wildapricot.org/event-3408818
https://bfpug.wordpress.com/conference-2019/
https://www.quanter.com/

8 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Introduction
In the beginning of the 20th century, a group of physicists

began experimenting with and publishing information about
a new approach to physics called quantum mechanics. They
thought it was a new way of looking at the natural world.
It was. Some thought that it would replace the classical
approaches that were already in use. It did not. Many
problems had to be solved by using both elements of quantum
mechanics as well as classical physics. This approach was

called semiclassical physics. About 100 years later, a group of
software developers began experimenting with and publishing
information about a new approach to software development
called agile development. They thought it was a new way
of developing software. It was. Some thought that it would
replace classical approaches that were already in use. It did
not. A semiclassical approach must be taken to most software
development activities, including the development of agile
quality metrics.

Feature

A SEMICLASSICAL
By Dr. Raymond Boehm, CFPS Fellow

APPROACH TO AGILE QUALITY METRICS

9 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

At first, it may seem that software quality metrics should
not be influenced by the techniques that were used. The user
should not care how software is developed nor if it is fit for its
intended use at the end. There is some truth to this. However,
the agile approach to software development causes us to
develop software in a series of relatively quick releases. There
must be ways to monitor quality at every step to ensure that
the product is of acceptable quality. This paper will discuss
defect analysis, failed deployments, net promoter score (NPS)
and recidivism. Some of these techniques are classic, others
are classic but have been changed when used in agile projects
and others are only used in agile development.

Defect Analysis
Tracking, fixing and analyzing defects have been software

development activities since the very beginning. In classic
waterfall implementations, defects were reported at every
phase of the project. This continued after the software was
deployed. After deployment, the number of defects found
could be tracked over time. Usually, the number should
decrease with time, but not always. Sometimes, more people
are added to the user community and they detect more
problems. In any case, the number of defects is a measure,
not a metric. To be able to compare it to other projects, it
must be normalized. It is often normalized by application size
in function points.

Defect tracking is done in agile projects as well. In agile
development, software is implemented in iterations. An itera-
tion consists of all software development activities: analysis,
design, coding and testing. It makes no sense to think about
analysis defects, for example. The defects are just associated
with the iteration. Iterations are normally all the same size. If
an organization has committed to the idea of two-week sprints
(an iteration in scrum), then all the iterations will be two
weeks each. They may have different team sizes. Therefore,
care must be taken in comparing the number of defects from
one iteration to another. Even with these possible anomalies,
defect count by sprint is a commonly used agile measure.

According to the 12 principles behind the agile manifesto,
the team should “deliver working software frequently, from a
couple of weeks to a couple of months.” Many organizations
violate this principle and take more than a couple of months
on the first release. In any case, this means that not all
iterations result in software being delivered to the user
community. The iterations that do deliver software are referred
to as releases. Defects that are found in these releases are
called escaped defects. They need to be tracked and resolved
just like they always have been.

Agile practitioners also have the need to normalize defect
counts by size. One size can still be function points. Function
points can be estimated based on user stories. However,

they can only be estimated for releases. Function points are
counted for delivered software. Iterations that do not deliver
software to the user community cannot be measured with
function points. There is another issue. Users have been
developing user stories as part of the development process.
It often makes sense to normalize the number of defects by
the number of user stories that have been implemented in the
iteration or release. There are caveats. User stories may vary
in size. An iteration might implement a single epic story or
several small user stories. Some iterations may only implement
a portion of a story.

Story points is an estimating technique in which each user
story is assigned an effort estimate. Some agile practitioners
normalize their defect counts using story points. It is important
to remember that story points are not measures of size, they
are estimates of effort. Done properly, story points will be
consistent across iterations and releases in the project. Because
of the way they are derived, they cannot be expected to be
consistent across multiple projects. They are certainly not
consistent across different organizations. This means that the
same story in different projects may have a different number
of story points. Therefore, the number of defects per story
point cannot be compared across projects or organizations.

Failed (or Unsuccessful) Deployments
Failed deployments have been an issue since the beginning

of software development. Some organizations simply hope that
they will not happen. Most organizations have contingency
plans that include rolling back to a previous stable version of
the software that failed. When deployments are done every
few months, these incidents are anecdotal. Once they become
frequent enough to track, the organization has a huge problem
on its hands. Obviously, it then must be tracked and rectified.
Some people call failed deployments unsuccessful deployments.
This is like pharmaceutical companies that refer to death as a
fatal event. Failed deployments are devastating to your team’s
reputation no matter what they are called.

In the agile world of frequent, or continuous, deployments, it
is still necessary to keep this measure close to zero. However,
now it makes sense to track them. It is easier for the team to
lose track of the number of failed deployments. The users will
still remember. The number of failed releases must decrease
over time. Otherwise, rectifying this becomes the organization’s
top priority.

“Defect count by sprint is a commonly
used agile measure.”

10 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Net Promoter Score
Developers have long been familiar with the idea of customer

satisfaction surveys. They are often part of outsourcing
contracts or tools promoted by chief information officers who
are attempting to prove the worth of their organizations. That
is not what this is. The Net Promotor Score (NPS) gauges how
likely users of an application would be to recommend it
to others. The interesting twist is that it is measured before a
release is delivered.

The point to remember about agile development is that an
application is delivered in a series of releases. Each release
must be usable to a certain extent. This is a theme that has
appeared in many agile and lean contexts. In lean marketing,
there is an emphasis on developing a minimal viable product
(MVP). This is something that potential customers can touch
and feel and use. From this, they will be able to understand the
product that is being pitched to them and start to articulate
the features for which they would be willing to pay. This
whole concept has been taken from agile software develop-
ment practices.

Agile software releases must take less than one year, with
many organizations pushing for six-month cycles or less.
This means that the functionality of the first releases may
be less than many stakeholders really want. However, it is a
compromise. By pushing for the earlier software releases, the
development team is getting experience with both the problem
domain and the technical environment that they are working
in. If there are problems, then they will surface sooner. This
mitigates the risk of working on a software application for 18
months and then finding major misconceptions that make the
software product useless.

As a result of the push for early delivery, some users may
be unwilling to recommend that next release to a friend or
colleague. This is understandable. Here, the key is to keep an
eye on the trend. It is good when the NPS starts out low and
gets higher with each successive release. If the NPS drops with
successive releases, then the software product is diverging
from what the users want.

The calculation of NPS is interesting. The only quantitative
question is, “How likely is it that you would recommend this
release to a friend or colleague?” The user utilizes a 10-point
scale to answer this question. If he/she answers with a nine
or 10, he/she is considered a promotor. If he/she answers one
through six, he/she is considered a detractor. The NPR is
calculated by subtracting the percentage of detractors from
the percentage of promotors. Thus, the NPR is a value between
-100 and 100. Positive values indicate that the promoters out-
number the detractors, which is good. A value more than 50 is
considered excellent; over 70 is considered exceptional.

When users are asked to grade their willingness to recommend
a product, there is usually one other question asked: “Why?”
This is an open-ended question that does not lend itself to
numerical analysis. However, reading through the answers will
give the team a better idea of what users like and which direc-
tion their software development should take.

Some people have questioned the idea of measuring NPS
before a release. NPS addresses the proposed feature set at a
point in time. Other characteristics like reliability are captured
by defect analysis and other metrics.

Recidivism
Recidivism counts the number of times that a user story

re-enters a sprint. The concept of recidivism can be tricky.
There is a woman who runs a bed and breakfast in New
Hampshire. When the breakfast dishes are cleared, she
analyzes what was eaten and what was left behind. She uses
this information to constantly adjust both her menu and her
recipes. She has decorated each room differently and beauti-
fully. Her staff is trained to please the guests. People who
stay there often return, which is good. In many ways, it is the
opposite of the Middlesex County Jail. In the jail, guests are
all given a one-inch thick mattress. Guests complain about the
quality of the food and claim that the staff is mean. However,
many guests return habitually, which is not good.

In classical waterfall projects, no real thought is given to
recidivism. If a list of requirements is generated, each require-
ment is met and marked complete. If a requirement is not
met, then it is considered a defect. In agile development, there
are several reasons that a user story may make multiple trips
through development. Good user stories are negotiable. For
example, a story like “as a customer service representative,
I can find customer payment history” can be implemented
in different ways. In order to get an early release done more
quickly, the user may agree that the representative can look up
the payment history based on the customer’s account number.

“The Net Promotor Score (NPS) gauges how
likely users of an application would be to
recommend it to others.”

11 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Once this software is released, the users may find it is unusable
as most customers do not know their customer number. In
the next release, the story must be reimplemented with the
representative using a telephone number. Sometimes, a user
story goes back into development because there has been a
change in business requirements. Agile development welcomes
this type of change. Unfortunately, some user stories go back
into development because they were implemented incorrectly,
and this went undetected before the release. Recidivism is
always a cause for concern. For metrics in general, particularly
recidivism, it is necessary to conduct a root-cause analysis to
determine if there is a problem or not.

Conclusion:
In some ways, the conclusion is familiar to many software

developers. Agile development is a lot more like classic devel-
opment than most agile practitioners believe. Unfortunately,
it is also much more different than many classically-trained
managers had hoped. Like physicists who solved their problems
100 years ago, we must take a semiclassical approach to solving
our software development difficulties.

About the Authors:

Dr. Raymond Boehm is an agile esti-
mating and measurement consultant. He
is also a methodologist and researcher.
He has been involved with software
development since the 1970s and agile
development since 2003. He is an IFPUG

CFPS Fellow and a Quality Assurance Institute (QAI)
Certified Software Quality Analyst. He has a Doctorate
of Professional Studies from Pace University and an
MBA from New York Institute of Technology. In addition
to independent consulting, he has served as the Metrics
Manager for the consulting division of Computer Sciences
Corporation and held other positions involving system
development.

12 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

The quest for quality continues. Manufacturers promote its
importance. Consumers tend to benefit from it, and may pay
more to ensure they get it. Speakers talk about it.1 Authors
write about it.2 International standards are established for it.3
Certifications are issued for it.4 Organizations include it in their
names.5 A simple online search returns more than 7.2 billion
hits on the word quality.6

Agile hardly stirs less interest, attention and scrutiny.
Organizations claim their dominance in the community.7, 8
Nearly everyone claims to be “doing agile.”9 Even “the fed”
claims agile as its way of working.10 Agile usage has spread
well beyond IT as evidenced with 61% of marketing organiza-
tions using or planning to use it in their work in 2019.11

Despite all of the interest, no standard exists for agile today.
Rather, we have a dozen or so approaches that claim a position

in the agile market. Some of these frameworks capitalize on
notions like iterative and incremental (concepts introduced
in 1957 at IBM)12, some on the popularity of products in the
past.13 A clear understanding of agile is further complicated
by introducing quality measures across such a broad set of
frameworks and techniques roughly bound together by a set
of principles and a manifesto. Nonetheless, the following
thoughts may advance the thinking of organizations exploring
the use of agile measurements and metrics.

Most often quality is described as the product’s “conformance
to requirements.” We could expand this definition to also
include requirements for services, which are often codified in
Service Level Agreements (SLAs). The quality measurement
challenge begins here, since the first of 12 agile principles
declares we “welcome changing requirements even late in

Considerations for Establishing
By Joe Schofield

Feature

Agile Quality Metrics

13 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

development.” An agile mindset accepts the fact that traditional
requirements churn is actually acceptable (embraced?) in agile
frameworks and approaches (from here forward, agile will
be used to include the set of frameworks like Scrum, Crystal
Clear and DAD, and more targeted approaches like Test-Driven
Development (TDD)). With frequently and constantly emerging
and evolving requirements, determining which set of require-
ments to verify could be anything but straight forward. As
iterative development and incremental delivery occurs,
assessing conformance to requirements needs to recognize
refinement and grooming as suitable change management
activities. Comparing committed features to released features
is a reasonable bound for assessing “conformance to require-
ments”—at least until the next release.

Using “conformance to requirements” as a potential defi-
nition for defects may require reconsideration as iterations
and releases occur (while defects come in varying levels
of types and severity, they are not the subject of this article;
however, detailed analyses are available14). As a product
owner shifts content priority in the product backlog and
unceasingly grooms (changes, adds, merges, splits, deletes)
specific requirements captured as stories, some which have
been released earlier, defect clarity may become obscured.
Acceptance criteria associated with new stories that introduce
incremental change with the same feature may render previous
non-conformances obsolete. As an example:

 Release Story ID Acceptance Criteria Comment

 1 1 a – Attribute G can The chili15 selection
 contain only red, or on a breakfast
 green burrito

 2 1a a.a – Attributed G can The restaurant
 contain red, green, or owners never
 none imagined a
 consumer not
 wanting red or
 green chili

 3 1b a.b – Attribute G can The restaurant
 contain red, green, owner forgot about
 both, or none the New Mexico
 Christmas tradition
 of both red and
 green in the season
 though both are
 valid any day

While “both” and “none” are defects in Release 1, neither is
in Release 3. The thinking that led to the acceptance criteria in
Release 1 was incomplete (though close enough at the time),
but acceptable with iterative development. What appeared to
be a defect (entering “both”) in Release 1 was not a defect in
Release 3. Should we still count this as a defect or merely a
benefit of iterative development? Do we expect (or demand)
that regression tests are consistent with changes to the
code? Does iterative develop tax traceability or merely justify
its need?

This ongoing upheaval suggests a very different “requirements
churn” in agile. The product owner has full ownership of the
product backlog, changing it seemingly whimsically, arbitrarily,
capriciously and ephemerally (WAC-E) (pronounced “whacky”)).
So then, establishing defect injection and detection measures
should consider the iterative nature, the intentionally vague-
to-better-understood nature of the agile work definition. And a
final twist. What if in the example above, those three iterative
cycles resulted in one release? Would we consider Story ID 1
and Story ID 1a to be defective? Purposely, the answer is left
unanswered since the intent is to enhance our thinking about
what quality means in agile before we begin to measure it.

While many organizations rely on testing, including full, daily
regression testing for newly-integrated code, even world-class
testing, will only remove as many as 50% of the defects in a
product.16 The other 50% or so were injected during require-
ments and design work; that is, story development and sprint
task execution in an agile environment. Considering a sprint
(or iteration) timebox for defect removal efficiency may hold
promise17 since defects can be tied directly to acceptance
criteria and their associated story. This seems to be a simpler
answer and is only useful once the considerations related
to quality and defects during iterative development are
better established.

Thus far, this article seems mostly to have offered cautions
regarding quality measurements related to defects and
requirements in agile efforts. Exactly right!

From Cautions to Suggestions
Improving quality, which should be the primary motive

behind quality measurements, can still be driven with practices
like peer reviews used in conjunction with Capture/Recapture
Methods (C/RM). C/RM allow teams to predict, with statistical
confidence, the remaining number of defects in a product
in a peer review setting.18 Refer to the IFPUG-cited source
for step-by-step guidance of this quality enhancing technique.
On agile teams, use peer reviews with C/RM on selected and
critical, not all, product components. Consider swapping team
members from other teams occasionally for peer reviews to
cross-pollinate best-quality practices and to add an element
of objectivity (account for this during sprint planning to avoid
over-committing sprint commitments). Employing both
design and code reviews might be worthy for inclusion in an

“Establishing defect injection and detection
meEsures should consider the iterative nature,
the intentionally vague-to-better-understood
nature of the agile work definition.”

Considerations for Establishing

14 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

organization-level definition of “done.” Requirement reviews
are a natural part of product backlog grooming when per-
formed by the product owner and the developers. Together,
these reviews have a direct impact on the quality of work of
products before testing is initiated, thereby helping to address
the 50% of defects not subject to testing coverage.

A related suggestion is apropos. Resist any temptation to
reward teams (certainly not individuals when working with
self-organized teams in agile) for either defect detection or
correction. Rewarding this behavior will inspire teams to
create more defects in order that they may be discovered, and
potential subsequent recognition for either total number of
defects found or corrected. This caution is an example of a
much greater warning: beware of unintended consequences
associated with the introduction of any measurement system
or resultant metrics. Instead, hold teams accountable for the
product they produce. Since value delivery is a major thrust
of agile in general, value lost or delayed as a result of defects
might be a useful quality metric; that value delivery less value
lost per release.

Beware of unintended consequences associated with the
introduction of any measurement system or resultant metrics

Early in my career, I heard about an organization that was going

to measure the number of calls received by its service center.

Customers began complaining that their calls were seemingly

dropped after a couple of seconds. The “manager” of the service

center went to check on the team. He heard a phone ring, saw a staff

member pick-up the phone and then return it to its base. The same

staff person then tallied a mark on a sheet of paper. The manager

said, “What is happening here. Callers aren’t getting answers to their

questions.” The staff person looked at the manager and said, “We

are being measured by the number of calls we receive, not the num-

ber resolved.” The dumbfounded manager could only blame himself

for the new dilemma and the metric “calls received.” He quickly

replaced it with “percentage of calls resolved on first contact.” In

turn, this change had a negative impact on the duration of calls (they

took longer, not usually seen as positive) and the wait time for calls

to be answered (as call center folks were taking the time to resolve

issues). Over time, applying the queueing theory and optimization

stabilized expected response times.

Rethinking the Importance of Quality Expectations
in Agile Efforts

Quality is no stranger to agile development. Quality is minimally
implied in the ninth agile principle, which states “continuous
attention to technical excellence . . .”19 Teams that use retro-
spectives are constantly addressing improvements and at least
some of those will be related to quality. Grooming continually
improves the quality of the product backlog content. I offer
these as a few examples of quality inherent in agile work.

In an article released in April 2019, scruminc describes
Schlumberger’s use of Scrum resulting in defect reduction
by about half, while also increasing productivity 25%, reducing
headcount by 40% and reducing costs by 25%.20 Reducing
rework (defects) had a positive effect on productivity, which
enabled Schlumberger to reduce headcount simultaneously.
Historically, rework has been estimated to consume between
30% and 80% of software development cost.21, 22 “Nailing” the
requirements at the start of the sprint was a noted contributor
to the Schlumberger turnaround.

In a study released in May 2019, speeding delivery, managing
priorities, increasing productivity and aligning with the business
all took precedence over enhancing software quality as motives
for adopting agile. Improving quality was ranked even lower,
ninth, as the perceived benefit of adoption. However, improved
quality was listed second as a success objective with DevOps
transformations. The same report found defect reduction eighth
behind other agile success measures like C-Sat, value delivery,
velocity, burndown and story completion.23

The State of Scrum survey reported a similar theme. Value
delivery (71%) and responsiveness (56%) were selected over
quality (44%) as most valued by executives. “Quality of life”
received high scores (more than 80%) by Scrum practitioners.
Seventy-seven percent of respondents expect to continue using
Scrum in the future.24

Oddly, quality was not even mentioned in one recent project
management annual survey.25

Don’t Forget the Function Point Angle
IFPUG practitioners and researchers have often calculated

defects per function point as a quality metric.26 Function points
are not a natural by-product of agile story-based requirements.
Comparisons between well-defined function points and incon-
sistent (as intended) relative measurements using story points

“Teams that use retrospectives are constantly
addressing improvements and at least some
of those will be related to quality.”

15 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

aren’t usually productive. However, in 2013, a case study pro-
posed the use of elementary processes as a “common denomi-
nator” since they are found naturally in function point analysis,
and are conceptually a worthwhile parallel in agile story
decomposition.27 To the extent that organizations find value in
measuring defects per function point, that metric might bridge
more traditional requirements definition and agile stories.

Steps Forward
One can reasonably expect the topic of quality, as it relates

to our product deliveries, to continue for some time into the
future. With most organizations using agile today and agile’s
expanding acceptance in numerous other industries, it may
be time to reset the discussion on why software and other
products are developed and released. Most of us willingly
acknowledge a preference for quality over costlier, less useful,
life-limited and defect-ridden products. Quality must therefore
be an aspect of the value delivery, and is so highly-evidenced
as crucial in this article. Simply stated, delivery without quality
is of little value.

Delivery Without Quality is of Little Value, Agile or Not!
As you participate in assessing quality in your organizations,

the closing list seems self-evident in agile organizations:

• Set expectations with all stakeholders as part of the
product visioning that encompass quality attributes.
Incorporate quality expectations in an organizational
definition of done.

• Reduce variation with minimally-documented practices
to promote consistency within and across teams. This

approach doesn’t keep teams from being agile; it does
minimize re-learning and re-discovery. Of the 91% of
organizations that offer training, 81% report improvement
in practice.28

• Employ techniques to detect defects early, well before
testing. Less rework will lead to high productivity and
lower total cost of ownership.

• Measure definitively, consistently and purposefully.
Carefully consider unintended consequences and
behaviors that may result from measurement activities.

• Shift the dialogue around agile measurements in general.
Strengthen the focus on value delivery, priorities and
releases versus cost, scope and schedule.

• Use existing reports and research to guide measurement
efforts. You may learn some desirable practices or some
you wish to avoid. Don’t imitate other cultures that don’t
reflect your own. Best practices in the wrong context often
make for bad practices.

• Continuous improvement doesn’t happen by chance.
Continuous learning feeds continuous improvement.

• Get the right people, trust them, keep them.

• Stop talking and thinking; start doing!

“Quality must therefore be an aspect of
the value delivery.”

16 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Special Thanks
I want to thank the following colleagues, active agile

practitioners, for their review and insightful comments
that enhanced this article and sharpened my thoughts:

• Jennifer Turgeon, Systems Research and Engineering,
Sandia National Laboratories

• Karen Grigg, Agile Advocate, Sr. Director of IT
Development, Caesars Entertainment

• Brandon Hart, Technical Product Manager, A Place
for Mom

References:
1 https://www.joejr.com/present.htm; most of these 50+ presentations
deal with quality, defects and improvement frameworks

2 https://www.joejr.com/pub.htm; most of these 35 books and articles
deal with quality

3 ISO 9000, Quality Management Systems; ASQ; 2015, 2011, 2009
4 CSQ Certified Software Quality Analyst, as an example
5 Quality Assurance Institute, as an example
6 retrieved using Google on 5/27/2019
72017 State of Scrum Report identified more than 500,000 members
8 SCRUMstudy reports more than 2,000 course registrations worldwide
per week

9 85.9% of more than 101,000 internationally surveyed software
developers use agile; Developer Survey Results; Stack Overflow; 2018

10 80% of federal IT projects describe themselves as agile or iterative;
Agile by the Numbers, Deloitte Insights; 2017

11 State of Agile Marketing 2018, Agile Sherpas; 2018
12 Iterative and Incremental Development: A Brief History; IEEE; 2003;

The recollections of Gerald M. Weinberg, who worked on the project,
provide a window into some practices during this period. In a personal
communication, he wrote: We were doing incremental development as
early as 1957, in Los Angeles, under the direction of Bernie Dimsdale
[at IBM’s Service Bureau Corporation]

13 Rational Unified Process with ancestral relationships with Agile
Unified Process, Agile Modeling, DAD, Enterprise Unified Process, as
examples; http://www.agilemodeling.com/essays/agileModelingRUP.
htm

14 The Economics of Software Quality; Jones & Bonsignour; 2011
15 While there are a number of “correct” ways to spell the word chili

(chile, chilli), I used mine—chili, green please; https://hotsaucefever.
com/chile/chile-chili-chille-correct-spelling-of-the-word/

16 https://www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAndR
emovalMethodsDraft5.pdf; page 15

17 See also: http://static1.1.sqspcdn.com/static/
f/702523/9242274/1288742153797/200806-Jones.pdf

18 The IFPUG Guide to IT and Software Measurement; IFPUG; 2012;
Chapter 36

19 http://agilemanifesto.org/principles.html; retrieved 6/2/2019
20 Doing What A Billion Dollars Couldn’t: How Scrum Inc. Partnered With

Schlumberger To Solve Their ERP Implementation; scruminc; April,
2019

21 Dr. Dobb’s Report; informationweek; July 12, 2010
22 The Economic Impacts of Inadequate Infrastructure for Software

Testing; National Institute of Standards & Technology; US Dept of
Commerce; May, 2002

23 13th Annual State of Agile SurveyTM Report; COLLABNET
VERSIONONE; May, 2019; pages 7, 8, 16, 11 (as referenced)

24 The State of Scrum 2017 – 2018; Agile Alliance;
25 The State of Project Management Annual Survey; Wellingtone; 2018;

page 14
26 The Mess of Software Metrics; Capers Jones; March, 2017
27 Function Points, Use Case Points, Story Points: Observations from a

Case Study; CrossTalk; May / June, 2013
28 2017 State of Scrum Report; Scrum Alliance; page 18

About the Author:

Joe Schofield is a recent Past President
of the International Function Point
Users Group. Today, he is an enter-
prise agile transformation coach,
an Authorized Training Partner
and a Scrum-Certified Trainer with

SCRUMstudy™. He has certified hundreds of Scrum
Masters, Developers and Product Owners in the last few
years. He retired from Sandia National Laboratories
as a Distinguished Member of the technical staff after
a 31-year career. Joe taught more than 100 college
courses, 75 of those at graduate level. He has more than
80 published books, papers, conference presentations
and keynotes—including contributions to the books: The
IFPUG Guide to IT and Software Measurement (2012),
IT Measurement, Certified Function Point Specialist
Exam Guide, and The Economics of Software Quality.
Joe has presented several worldwide webinars for the
Software Best Practices Webinar Series sponsored by
Computer Aid Inc.

Joe holds six agile-related certifications: SA, SCT™, SMC™,
SDC™, SPOC™ and SAMC™. He is also a Certified Software
Quality Analyst and a Certified Software Measurement
Specialist. Joe was a CMMI Institute-certified instructor
for the Introduction to the CMMI®, a Certified Function
Point Counting Specialist and a Lockheed Martin-certified
Lean Six Sigma Black Belt. He completed his master’s
degree in MIS at the University of Arizona in 1980.

https://www.joejr.com/present.htm
https://www.joejr.com/pub.htm
http://agilemanifesto.org/principles.html
http://www.qaiusa.com/
https://www.agilesherpas.com/state-agile-marketing-2018/
http://www.agilemodeling.com/essays/agileModelingRUP.htm
https://hotsaucefever.com/chile/chile-chili-chille-correct-spelling-of-the-word/
https://hotsaucefever.com/chile/chile-chili-chille-correct-spelling-of-the-word/
http://www.ifpug.org/content/documents/Jones-SoftwareDefectOriginsAndRemovalMethodsDraft5.pdf
https://www.amazon.com/Economics-Software-Quality-Capers-Jones/dp/0132582201/ref=sr_1_1?s=books&ie=UTF8&qid=1316391575&sr=1-1
http://static1.1.sqspcdn.com/static/f/702523/9242274/1288742153797/200806-Jones.pdf
http://static1.1.sqspcdn.com/static/f/702523/9242274/1288742153797/200806-Jones.pdf
https://www.amazon.com/gp/product/1439869308/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=ifpug-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1439869308
https://34slpa7u66f159hfp1fhl9aur1-wpengine.netdna-ssl.com/wp-content/uploads/2019/05/ERP-Implementation-CaseStudy-R4-1.pdf
https://34slpa7u66f159hfp1fhl9aur1-wpengine.netdna-ssl.com/wp-content/uploads/2019/05/ERP-Implementation-CaseStudy-R4-1.pdf
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
https://www.scrumalliance.org/learn-about-scrum/state-of-scrum
https://www.joejr.com/CTA5-2013.pdf
https://www.joejr.com/CTA5-2013.pdf
https://www.wellingtone.co.uk/state-of-project-management-2018/
https://asq.org/quality-resources/iso-9000
https://www.it.uu.se/edu/course/homepage/acsd/vt08/SE1.pdf
http://www.agilemodeling.com/essays/agileModelingRUP.htm

17 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Feature

Since its creation, the agile movement has continued to
evolve and grow in popularity. The reason for this is simply
that when implemented correctly, agile works—and its benefits
are undeniable. The Standish Group says, “Agile projects are
successful three times more often than non-agile projects.”

For example, most agile implementations foster increased
communication among stakeholders and improved time-to-
market. However, while testing is certainly just as important
within the agile framework as in traditional development, it
is not strictly defined, leaving individual teams to determine
how to best approach testing-related tasks. This is problematic

because testing is essential for mitigating risk, but it is often
undervalued and not considered a priority. As a result, there
may be a reduction in quality, ultimately risking the reputation
of the team or the company.

Testing includes activities that execute the product (dynamic
testing) and activities that review the product (static testing).
Most people in software development would recognize dynamic
testing, which includes executing test cases and comparing
results. Static testing, however, includes reviews and inspections
in which a person (or tool in some cases) looks at the code or
deliverable and compares it to requirements or another standard.

AGILE TESTING METHODS:
By Sheila P. Dennis, CFPS

A PATH TO IMPROVED SOFTWARE QUALITY

18 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Reviews and inspections can be applied to any piece of work
at any time in the development lifecycle. Reviewing or testing
work products as soon as they are available will help find defects
earlier in the process and reduce the possibility of rework.

One of the most successful solutions is to combine agile
with Test-Driven Development (TDD). The synergy between
the two frameworks facilitates higher quality software in
less time. More importantly, it allows IT to comprehensively
support the needs of the business and the end users of the
software, starting early in the lifecycle.

Agile Software Development
Agile software development runs counter to the traditional

waterfall methodology that many organizations may still have
in place. Agile methods empower a team’s ability to deliver by
involving the whole team in planning and meeting the business
need, utilizing a structure that allows the team to control their
process to meet the environment.

Agile is defined by continuous delivery, focusing on what
can be defined, designed, coded, delivered and tested in stages.
These stages (called “sprints” or “iterations”) are short, time-
boxed increments, sometimes as little as a week or two. Short
cycles, constant feedback and close engagement with the
product owner lead to increased communication and reduce
the impact if a change in requirements is requested.

Development is a collage of multiple, interrelated processes.
Whether the project uses extreme programming, test-driven
development, black-box testing or exploratory testing in order
to deliver functionality, the processes used to develop the code
must be synchronized with the processes used to test the code.
Agile techniques leveraging cross-function teams that include
developers and testers put teams in the best position to ensure
a synchronized process.

Effective testing scenarios require a tester to work with
users, product owners, business analysts, developers and
others to determine whether a deliverable is what it is supposed
to be and whether it meets the definition of “done” and
standards of quality. Testing is a collaborative enterprise
which is facilitated by the agile framework.

Test-Driven Development
A traditional development cycle utilizes the “Test Last”

method, meaning that most testing takes place after all of the
other stages of development, often right before delivery. Test
Last also involves a separation between developers and testers,
whereby the developers complete their work and “throw it
over the wall” to a tester, separating development from the
user experience and ultimately hampering communication.

This frequently leads to bottlenecks near the end of a cycle,
as issues are discovered that require rolling the product back
several stages.

Even within the agile framework, teams can choose to leave
testing as the last task in a sprint. Of course, the delays
are considerably less than with waterfall (in which testing
is completed at the very end of the development process), but
bottlenecks are still an issue that impede quality and delivery.

“Test First,” in which unit tests are written before the code,
can mitigate bottlenecks. In this case, the test helps to define
what the code is meant to do, providing guidance for the
developer in terms of user functions. This concept is a natural
fit with agile in two ways:

1. By developing the tests from the requirements, rather
than the code, communication increases. The creator of the
requirements, the developer and the tester must collaborate on
the tests and the subsequent code, thereby increasing everyone’s
understanding of the work at hand.

2. By having the test or test suite written first, there is no need
to wait for the testing to be done. The code can be written
and tested immediately, especially when automated testing
is included in the process (considered a best practice). If the
code fails, it can be pushed onto the backlog and if it succeeds,
the next item can be started.

TDD is a specific type of Test First process. The primary
difference is in adding refactoring (step five, below). Table 1
shows the steps in the TDD process:

The Steps in Test-Driven Development

1. Accept a unit of work and write a test case for it. This is often,
but not always, a unit test.

2. Run the test, which is expected to fail since the code has not
been written.

3. Write just enough code to pass the test.

4. Rerun the test. If it fails, return to step three; otherwise, proceed.

5. Refactor the code to simplify it and return to step four.

6. Repeat all steps until the end of the iteration.

Table 1. TDD Process

“Testing is a collaborative enterprise which
is facilitated by the agile framework.”

19 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

This process is sometimes referred to as “red-green-refactor,”
in which “red” represents writing the test and not passing and
“green” is creating the code and passing the test.

 Advantages of TDD
There are a number of inherent benefits in TDD, including:

• Fewer delivered defects. This is largely due to early
testing, which prevents defects.

• Improved communication. This is a central theme in agile.

• Higher quality tests. This is due to development through
the collaboration of all stakeholders.

• Improved code quality:

o The code is generally kept simple as a result of the
TDD process.

o Less dead code primarily due to the refactoring step,
which simplifies and cleans up the code. Since each
code section is as simple and clean as possible, there
is usually less dead code—even late in the application
lifecycle.

Disadvantages of TDD
TDD does have its share of drawbacks, which should always

be a consideration:

• It is a change, and change requires effort. As with any
business transformation, there will be resistance, and the
added effort needs to be shown to be worthwhile for
internal buy-in.

• TDD often begins with no application to run the tests, so
it is often necessary to develop stubs (a testing segment
for the code to send results to), drivers (something to send
results to the code under test) and other extra blocks of
code. However, these items are often reusable as the prod-
uct proceeds, so they may only need to be created near the
beginning of the project and occasionally thereafter.

• The testing is not complete. There will always need to be
security testing and acceptance testing on most products.

• It requires strong communication between team members,
but this is generally true of all agile teams.

• It usually requires the developers to also do some testing.
Then again, developers almost always do some degree of
testing, at least a simple check to make sure the code they
create works. In fact, it can be argued that testing should
be done by developers even with a separate testing team,
as it ties the two groups more closely together and can
lead to better code.

Other Forms of TDD
In the same way that TDD is a refinement of “Test First”

development, there are techniques that take TDD further still.

While TDD creates unit tests, Acceptance Test-Driven
Development (ATDD) creates acceptance tests before coding
begins, based on the team’s understanding of the requirements.
This requires even more discussion with the requirements’
authors, creating deeper collaboration and furthering the
understanding of the requirements by the developers and
the authors.

Behavior-Driven Development (BDD) combines unit tests
and acceptance tests within specific contexts. The test often
follows this formula:

• Given a context

• When an event happens

• Then an outcome is generated

While TDD can be implemented on its own, without the use
of ATDD or BDD, it’s important to consider which framework
most appropriately supports a given team or project.

Improved Software Quality and Value
The true value of IT is how well it can support the needs of

the business. One of the core strengths of agile is its ability
to increase communication between testing and development
groups, as well as between technical and business teams. TDD
supports increased communication as well. It furthers the
collaborative environment encouraged in agile and enables

20 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

FeatureFeature

improved understanding of requirements by all parties.

With a better understanding of the requirements from the
business, and by collaborating earlier with testers, developers
have a more accurate picture of expectations; as a result,
they can write cleaner code with fewer attempts. This method
impacts and even multiplies its effect throughout the lifecycle,
reducing defects and dead code down the line. Less time and
money need to be spent in defect fixes and design revisions
due to misunderstood or poorly-defined requirements.

There are numerous ways in which these methodologies
combine for value-added outcomes. The greatest and truest
gains come by way of facilitating a well-interpreted picture of
the business objectives and what meeting them will require as
early as possible in the lifecycle.

Resources:
 SPaMCAST 31 – Ambler, Test Driven Development, Words and Change:
http://www.spamcast.libsyn.com/s_pa_mcast_31_ambler_test_driven_
development_words_and_change

SPaMCAST 295 – TDD, Software Sensei, Cognitive Load: https://
tcagley.wordpress.com/2014/06/22/spamcast-295-tdd-software-sensei-
cognitive-load/

SPaMCAST 401 – Listening, Quality, Testing and Contract Closure,
Developers and Testing: https://tcagley.wordpress.com/2016/07/03/
spamcast-401-listening-quality-testing-and-contractclosure-developers-
and-testing/

Agile Java: Crafting Code with Test-Driven Development by Jeff Langr

The Cucumber Book: Behaviour-Driven Development for Testers and
Developers by Matt Wyne and Aslak Hellesoy

Clean Code: A Handbook of Agile Software Craftsmanship by Robert C.
Martin

Five Problems That Impact Testing Effectiveness and Efficiency, DCG
Software Value Trusted Advisor Report: https://www.softwarevalue.com/
insights/publications/5-problems-that-impact-testing-effectiveness-and-
efficiency/

How Can You Make Integration and Acceptance Testing Truly Agile?
DCG Software Value Trusted Advisor Report: https://www.softwarevalue.
com/insights/publications/ta-archives/how-can-you-make-integrationac-
ceptance-testing-truly-agile/

About the Author:

Sheila Dennis is a familiar figure
around IFPUG, being a CFPS member for
more than 20 years and having served
on at least four committees, including
as past chair of the Certification
Committee. She is an active contributing

author to IFPUG publications, trainer and presenter at
global conferences and for global clients. With more than
35 years of experience in the IT industry, Sheila has spe-
cialized in business process modeling, benchmarking,
cost estimation services, function point analyses and
process compliance. In addition to more than 20 years of
service for the Department of Defense, she has more than
15 years of experience working at the senior and executive
level for client-facing engagements for Gartner Group,
CSC and the David Consulting Group/ DCG Software
Value. She has a BA in mathematics from Columbia and
is currently a senior cost analyst providing estimation
modeling for Cobec Consulting Inc. and Logapps Inc.

“With a better understanding of the
requirements from the business, and
by collaborating earlier with testers,
developers have a more accurate
picture of expectations.”

https://tcagley.wordpress.com/2014/06/22/spamcast-295-tdd-software-sensei-cognitive-load/
https://www.softwarevalue.com/
http://www.spamcast.libsyn.com/s_pa_mcast_31_ambler_test_driven_development_words_and_change
https://tcagley.wordpress.com/2014/06/22/spamcast-295-tdd-software-sensei-cognitive-load/
https://tcagley.wordpress.com/2014/06/22/spamcast-295-tdd-software-sensei-cognitive-load/
https://tcagley.wordpress.com/2016/07/03/spamcast-401-listening-quality-testing-and-contract-closure-developers-and-testing/
https://tcagley.wordpress.com/2016/07/03/spamcast-401-listening-quality-testing-and-contract-closure-developers-and-testing/
https://tcagley.wordpress.com/2016/07/03/spamcast-401-listening-quality-testing-and-contract-closure-developers-and-testing/
https://www.softwarevalue.com/insights/publications/5-problems-that-impact-testing-effectiveness-and-efficiency/
https://www.softwarevalue.com/insights/publications/5-problems-that-impact-testing-effectiveness-and-efficiency/
https://www.softwarevalue.com/insights/publications/5-problems-that-impact-testing-effectiveness-and-efficiency/
https://www.softwarevalue.com/insights/publications/ta-archives/how-can-you-make-integrationacceptance-testing-truly-agile/
https://www.softwarevalue.com/insights/publications/ta-archives/how-can-you-make-integrationacceptance-testing-truly-agile/
https://www.softwarevalue.com/insights/publications/ta-archives/how-can-you-make-integrationacceptance-testing-truly-agile/
http://metricas.com.br/

21 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Introduction
Today, Enterprise IT in large Organizations is a complex mix

of Tools, Frameworks and Processes. While individual depart-
ments focus on delivering maximum throughput to increase
ROI, they tend to invest in building their own processes &
reports to bring about transparency in the IT Life Cycle. In
projects involving cross functional flows and collaboration
between departments, there will not be a uniform framework
for Monitoring, Reporting and Escalations.

In addition, the absence of uniformity of Tools and
Frameworks make the Program Managers and Project

Managers spend inordinate amount of time generating and
combining reports at Program, Department or Enterprise level.

STATS Dashboard can be designed as a one-stop solution for
driving transparency to achieve cross-enterprise IT visibility. It
would provide visibility across all aspects of IT Life Cycle from
Planning to Operations.

While it would be built tailor-fit for each department,
seamlessly fitting into their existing tools and functions, it
would subtly push the leadership to self-evaluate and adopt
best practices, tools and guidelines.

A Solution
T O T R A C K A N D M O V E

By Ankitha Pareek and Anupama Karal

22 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Figure 1 - Snapshot of the dashboard

Birth of STATS Dashboard:
Small to large Enterprises typically have several departments.

Each department can run multiple Programs in parallel.
Each Program can have several projects running in parallel.

Every program strives for Continuous Improvement.
Continuous Monitoring & Measurement is a pre-cursor to
Continuous improvement. Every Program at some point, real-
izes missing dots in their reporting of Schedule, Adherence &
Quality functions. Running around and capturing details from
every tool manually drains the team. Setting rules and having
a standardized process is what every team wishes to have.

Identifying a solution to below problems can give birth to
STATS Dashboard.

• Teams operating in silos and no easy way to measure
the engineering maturity of application team.

• Lack of standardized processes across the applications.

• Engineering rigor varies across applications, resulting
at different levels of maturity.

• Multiple tools in the ecosystem without any unified
dashboard

• Lack of visibility into tool adoption by different
application teams.

• Manual reporting of metrics

Aim of STATS Dashboard
STATS Dashboard would be an application which would

provide end to end visibility across a Program. This would
also include view of Planning to operations on individual
projects in the program. Be it about getting visibility to tools
which captures defects or a tool which certifies the quality of
code, we would have everything on the tip of our fingers.

This Dashboard would aim to provide a view into tool
adoption and engineering rigor across different applications.
Phases from Planning till Delivery would be covered in
the Dashboard.

Visibility across different phases

•Plan & Design

•Build & Unit Test

•Test & Verify

•Release & Deploy

•Monitor & Operate

Figure 2 Provides Statistics of each process in every phase

This would aim to provide a real-time data along with trends
associated to different applications. This will in turn help in
measuring Key Performance Indicator which would define the
overall health of all the applications.

This would improve the Continuous Integration/Continuous
Deployment maturity across all the applications, resulting in
improved agility and reduce silos.

“STATS Dashboard can be designed as a
one-stop solution for driving transparency to
achieve cross-enterprise IT visibility.”

23 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Here are the few Statistics which can be captured in
the Dashboard:

• Release Statistic – Monitor the progress as per plan of
each application / project

• Code Quality Statistic – Monitor Health of API’s

• Code Coverage Statistic – Capture Unit Test Coverage
for every API

• Security Statistic – Monitor Security level of Code

• Defect Management Statistic – Monitor Defects in
every Release

• Test Automation Statistic – Monitor Health check and
Regression suits of each Track

• Performance Statistics – Monitor performance of each
Application

• Test Management Statistics – Monitor Test case for
every Release.

Excepted Outcome:
This Dashboard would cater to different stake holder of an

IT Program. While the executive leadership can get an eagle’s
eye view of the Schedule, Adherence and Quality of their
department initiative, Program & Project Managers will be able
to monitor and act on continuous improvement goals.

Delivery teams can use it for their day to day operations
to report to IT Stakeholders on their progress, Quality of the
product and any immediate risks. IT Operations can use the
Dashboard to monitor the heartbeat of the applications.

This Dashboard will not intend to provide in-depth details of
the project or replace any of the existing tools, it would merely
bring a holistic view of IT Life cycle and act as an accelerant
for decision making.

Following incorporation of this Dashboard in the day to day
Project life, we will be able to experience below improvements
-

• Rapid feedback & continuous improvements

• Usage of Real time trend data for future predictions

• Teams would be organized around KPIs

• Lean engineering teams & improved productivity gains

• Shared Ops and Dev responsibilities

• Continuous delivery

• Continuous testing

• DevOps scorecard

• Zero touch deployment

• Tools Optimization

Conclusion
STATS Dashboard would bring a holistic view of the IT

Life cycle and act as an accelerant for decision making, even
though it would not provide in-depth details of the project or
replace any of the existing tools.

Focusing only on the deliverables is always not enough.
A Dashboard like this would bring critical value proposition
when starting new Strategic Programs, as this Dashboard will
be custom-fitted to the Engineering Processes and Tools used
in any organization and save hours of effort on future monitor-
ing and reporting. It would also ensure peace of mind for the
Business Stakeholders to have instant Quality Reports at
their fingertips.

I’m the sole owner of this article. I have not violated
any Mindtree policies as well as not provided any
confidential information.

About the Authors:

Ankitha Pareek is a Business Analyst
at Mindtree, Bangalore, India. She has
2 years of experience working in Agile
Projects.

Anupama Karal is a Project Manager
at Mindtree Bangalore, India. She has
13 years of experience and specializes in
Agile Projects. She is a Certified SCRUM
and PRINCE Practitioner.

“This would improve the Continuous Integration/
Continuous Deployment maturity across all the
applications, resulting in improved agility and
reduce silos.”

24 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Published twice a year by the International
Function Point Users Group (IFPUG),
headquartered in Princeton Junction,

New Jersey, United States

MetricViews September 2019

Editor
David Herron

IFPUG Board of Directors
President

Mauricio Aguiar

Vice President
Christine Green

Treasurer
Kriste Lawrence

Immediate Past President
Thomas Cagley

Director of Certifications
Roopali Thapar

Director of
Communications & Marketing

Diana Baklizky

Director of Sizing Standards
Charles Wesolowksi

Director of
International Membership

Dácil Castelo

Director of Education
& Conference Services

Luigi Buglione

IFPUG Office
Executive Director

Michael Canino

 Views and opinions presented in
MetricViews articles may not represent

those of the International Function
Point Users Group (IFPUG).

Please submit all articles,

news releases and advertising to:

IFPUG/MetricViews
191 Clarksville Road

Princeton Junction, NJ 08550
United States
(609) 799-4900

 metricviews@ifpug.org

MetricViews Certification Committee
By Gregory Allen, Committee Chair

Certified Function Point Specialist (CFPS) certification extensions remain
popular in the 2019 fiscal year. There were 236 certification extensions
approved worldwide from July 1, 2018 through June 30, 2019. Details for
extending your CFPS certification can be found by clicking “Certification”
and then “Certification Extension Program” on the IFPUG website.

Most CFPS and Certified SNAP Practitioner (CSP) exams are conducted
using the iSQI FLEX method in which an individual schedules and takes the
exam at a time and location of his/her choosing. There is also the option for
a group of people to schedule a SMEX exam at a set time in one location.
While this option is most often associated with an IFPUG or regional
conference, it is not restricted to conferences. For example, a CFPS SMEX
exam was recently held in Malaysia for 10 participants. Welcome, Malaysia!

The Certification Committee has submitted Spanish and Korean transla-
tions of the CFPS exam to iSQI for publication. The publication dates will be
announced as soon as they are scheduled.

Communications and
Marketing Committee
By Antonio Ferre Albero, Committee Chair

During the past few months, the Communication and Marketing Committee
(CMC) has been focused on multiple technological topics. In April and May,
ifpug.org suffered from different downtimes/unavailability as a result of
causes outside of IFPUG’s control. After discussions that did not lead to
clear and concrete root causes, we made the decision to change the website
hosting provider. The CMC created a new site from scratch in order to
prevent further issues. We migrated, in a plain mode and in a controlled
way, the concrete information from the internal tables of the previous host,
instead choosing an easy migration between systems, to prevent moving
technical components from one place to another. So, from a technical point
of view, the site is totally new. We also implemented a system to detect and
repair broken links and harmonize folders.

We moved from two providers (one for the hosting and a second one for the
IFPUG mail system) to a new one, avoiding historical configuration of redirects
between the domain register, the email system and the hosting, and without
DNS MX (mail exchanger records). Now, the domain points directly to the
hosting provider DNS, with a set of benefits. Under this email system renewal,
a reconfiguration and reorganization of email accounts has been done.

Another, not less important, change done by the CMC has been to implement
in the ifpug.org site a Secure Sockets Layer (SSL) certificate. So, now IFPUG
is “https:” instead of “http:” with the interesting benefits that it provides,
starting with more credibility and finishing with having improved positions
in the search engines.

Committee Reports

I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g24

mailto:metricviews@ifpug.org

25 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g25 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Perhaps those changes have been a little bit invisible but
a lot of challenging topics, deadlines and milestones have
been accomplished in the last months.

Conference and
Education Committee
By Filippo De Carli, Committee Chair

IFPUG returned to Bangalore, India with ISMA17 in March
2019 and celebrated “40 Years of Function Points.” Allan
Albrecht’s paper, which created our functional size measure-
ment movement and community, was published in May 1979,
just 40 years ago. We discussed plenty of interesting topics
related to Function Points, as well as how to size new and
different technologies such as the Internet of Things and much
more. Visit https://www.ifpug.org/isma17/ for more information
and to see photos from the event. Interested in accessing
the presentations? IFPUG members can access conference
proceedings, at no charge, in the Knowledge Base within the
“Member Services Area” of the IFPUG website and partly from
the external website by clicking here.

IFPUG supports Métricas 2019. Organized and hosted by the
Brazilian Function Point User Group (BFPUG), the event will
be held again in Sao Paulo, Brazil on Nov. 7. It has yet to be
recognized as CEP-valid. The final program will be published
during the next few weeks. Learn more at https://bfpug.
wordpress.com/conference-2019.

As any IFPUG committee, the Conference and Education
Committee (CEC) is delighted to work with anyone interested
in helping us. Would you like to join the CEC? Send an email
to ifpug@ifpug.org or complete the volunteer form available on
the IFPUG website.

Last but not least, feel free to contact us at cec@ifpug.org!

Functional Sizing
Standards Committee
By Dan French, Committee Chair

The first half of 2019 finds the Functional Sizing
Standards Committee (FSSC) working hard on the “Mobile
Applications” and “Elementary Process” white papers while
simultaneously beginning work on the “Application
Boundary” and “Single-Sign On” projects. Also, the “XML”

white paper is nearly ready for publication.

The FSSC is working closely with the NFSSC to review
the General System Characteristics (GSC) as part of an
Non-Functional Sizing Standards Committee (NFSSC)
research project by Charley Tichnor and Esteban Sanchez
through Marymount University.

The committee continues to meet monthly but, due to
budget cutbacks, did not hold an annual meeting in June. The
FSSC is working on an virtual alternative and our plans are to
meet before the end of the year.

Steve Keim, who has served IFPUG on both the FSSC and
its predecessor, the Counting Practices Committee (CPC), has
announced his retirement. The committee would like to thank
Steve for his contributions to IFPUG over the past 20+ years.
His efforts are greatly appreciated, and he will be missed.

With Steve’s retirement, the FSSC now has an opening on
the committee for anyone who is interested in working on a
counting practices committee. Volunteers receive CEC credit
for their participation. If you are interested, please fill out the
volunteer form and submit it to Dan French, FSSC chairman,
at (dfrench@cobec.com).

The committee appreciates the support of the IFPUG
membership and is always looking for new projects to work
on. We welcome suggestions from members on topics of
interest. Please submit your ideas.

Industry Standards
Committee
By Carol Dekkers, CFPS, Committee Chair

This has been an exciting six months for the IFPUG Industry
Standards Committee. Thank you to Steve Woodward who
stepped down as committee chair but will remain an active
contributing member of our committee.

Industry Standards Work:

• ISO/IEC 25020 Software Quality Standard: Steve
Woodward’s involvement on various ISO/IEC committees
bore fruit with the successful mention of Functional Size
Measurement (IFPUG Functional Sizing ISO/IEC 20926) in
the recently released ISO/ IEC Standard 25020: Systems &
SW Quality Requirements & Evaluation (SQuaRE), Quality
measurement framework.

• SNAP becomes IEEE P2430 (C/S2ESC) Standard for SW
Nonfunctional Sizing Measurement! Led by IFPUG NFSSC
chair, Talmon Ben-Cnaan, the SNAP project was recently

https://www.ifpug.org/isma17/
mailto:ifpug@ifpug.org
mailto:cec@ifpug.org
mailto:dfrench@cobec.com
https://netforum.avectra.com/eweb/DynamicPage.aspx?WebCode=LoginRequired&Site=IFPUG
www.ifpug.org/conference-content/
https://www.ifpug.org/get-involved/
https://www.iso.org/obp/ui/#iso:std:iso-iec:25020:ed-2:v1:en
https://bfpug.wordpress.com/conference-2019/
https://bfpug.wordpress.com/conference-2019/
https://www.iso.org/obp/ui/#iso:std:iso-iec:25020:ed-2:v1:en

26 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Committee Reports

completed and is pivotal for progression as an ISO/IEC
standard.

• International Cost Estimating and Analysis Association
(ICEAA) Software Cost Estimation Body of Knowledge
(sCEBOK): The new Software CEBOK work (involving
IFPUG, NESMA, Galorath, COBEC Consulting, PRICE
Systems and others) will culminate in a new certification
including Function Points as a key component. IFPUG
involvement includes myself, Dan French (FSSC Chair),
Roopali Thapar (IFPUG Board), and Christine Green
(IFPUG Vice President).

• International Software Benchmarking Standards Group
(ISBSG): Our IFPUG representative, Pierre Almen, was
recently elected as ISBSG President and will become the
face of ISBSG worldwide.

• OMG automated Function Points becomes an ISO/IEC
standard: Chair of the Consortium for Software Quality
(CISQ) Bill Curtis recently announced ISO 19515:2019
Information technology—Object Management Group
Automated Function Points (AFP), 1.0 became a standard.

Congratulations to Steve, Talmon and Pierre on your accom-
plishments. Best wishes to our board candidates, Dan French
and Talmon Ben-Cnaan, in the IFPUG election!

International Membership
Committee
By Saurabh Saxena, Committee Chair

The International Membership Committee (IMC) is committed
to enhancing IFPUG members’ experiences by providing quick
resolutions to all sorts of queries. In addition to existing country
representatives—Gianfranco Lanza (Italy), Lionel Perrot
(France), Cao Ji (China) and Ivan Pinedo (Spain)—two new
members recently joined the IMC. They are Rajesh Koduru
(India) and Sergio Brigido (Brazil). IMC members are doing a
wonderful job. In Italy, the IMC successfully closed 44 requests
last year; we close 11 requests per month (an average of 2
hours/month of support) in Brazil.

Based on discussions with members worldwide, the IMC
has recognized and plans to address the following three
challenges:

• Bringing more value to IFPUG membership by identifying
and providing additional benefits to members.

• Updating CFPS/CFPP details on the IFPUG website quickly.

• Simplifying the CEP process.

The IMC is working with other committees to ensure that
IFPUG not only grows in new geographical regions but also
retains its existing members.

Non-Functional Sizing
Standards Committee
By Talmon Ben-Cnaan, Committee Chair

SNAP as an IEEE Standard

SNAP was approved as an IEEE standard; the new standard
will be published in September.

SNAP and GSCs: A New Research on General System
Characteristics (GSCs)

In Allan Albrecht’s original 1977 paper on function point
analysis (Measuring Application Development Productivity),
he included 10 “complexity factors” which were weighted from
zero to five depending on their degree of influence toward
the application being developed. He updated these in his 1983
publication (Software Function, Source Lines of Code, and
Development Effort Prediction: A Size Validation) into 14
complexity factors, which are the foundations of the GSCs
published today in the Counting Practices Manual. These 14
GSCs have been relatively unchanged since 1983 although
additional clarification has been published.

IFPUG Functional Sizing Standards Committee (FSSC) and the
Non-Functional Sizing Standards Committee (NFSSC), together
with Marymount University, are analyzing the current GSCs con-
sidering the new technologies and in light of the introduc-
tion of SNAP, and will come with recommendations to
update the GSCs, especially for SNAP users.

The NFSSC is calling on users to send us counting data, so
that we can analyze the data and provide insights regarding
productivity, benchmarking and quality measurements.

26 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

https://www.iso.org/standard/65378.html
https://www.iso.org/standard/65378.html
https://www.iso.org/standard/65378.html

27 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

Be sure not to miss
Luigi Buglione’s article

“40 Years of Function Points: Past, Present, Future.”

Read about the history of Function Points beginning with Allan Albrecht in 1979.

Learn how Function Point Analysis (FPA) is being used today to manage software

projects. And see what Mr. Buglione has to say about the future of FPA. You can

fi nd this insightful article at ifpug.org.

IFPUG Board Election Schedule
Date Action
July 9 Call for nominations.
July 22 Nominations due to IFPUG Offi ce.
August 26 Ballots emailed to membership.
October 4 Ballots and selections due to IFPUG Offi ce by close of business (6:00 pm Eastern Daylight Time).
 Ballots may only be cast by (then) current voting members.
October Election results will be presented at the 2019 meeting.

https://www.ifpug.org/40-years-of-function-points-past-present-future/

As an IFPUG member, you are part of an international association dedicated to iÜ roving the quality and future of the
information technology industry. Are you taking full advantage of all that your membership offers?

Benefits include:

 • Access to education and professional growth through semi-annual IFPUG Workshops and the annual IFPUG
Conference at special member rates.

 • Opportunity to join a local IFPUG Chapter, where you can exchange ideas, share experiences, and learn about
new techniques on an ongoing basis, in your area.

 • Participation in IFPUG communities to advance state-of-the-art software measurement and professional
networking with colleagues from around the world.

 • Professional certifications, which establish your credentials as a specialist in the growing field of software metrics.

 • Access to state-of-the-art products and services at vendor showcases during the annual conference.

 • Special member rates on IFPUG materials (e.g., the Function Point Counting Practices Manual and the International
Software Benchmarking Standards Group publications).

IFPUG’s social media channels allow you to stay connected to your fellow IFPUG colleagues and the HQ staff.

Be Informed! Stay Connected!

STAY CONNECTED

Spread your message to a global audience in 32 countries across 6 continents.
Promote your product or service by placing a highly visible ad in the March 2020 issue of MetricViews!

Contact IFPUG Headquarters at +1-609-799-4900 or ifpug@ifpug.org.

Argentina
Belgium
Brazil
Canada
Chile

China
Colombia
Croatia
Czech Republic
Denmark

France
Ghana
Hong Kong
India
Israel

Italy
Japan
Luxembourg
Malaysia
Netherlands

New Zealand
Peru
Poland
Singapore
South Korea

Spain
Sweden
Switzerland
Taiwan
Thailand

United Kingdom
United States

Advertise Around the World with IFPUG

28 I F P U G M e t r i c V i e w s S e p t e m b e r 2 0 1 9I F P U G . o r g

mailto:ifpug@ifpug.org
https://twitter.com/IFPUG?lang=en
https://www.facebook.com/ifpug
https://www.linkedin.com/company/ifpug/

